This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/path.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
"""
A module for dealing with the polylines used throughout matplotlib.

The primary class for polyline handling in matplotlib is :class:`Path`.
Almost all vector drawing makes use of Paths somewhere in the drawing
pipeline.

Whilst a :class:`Path` instance itself cannot be drawn, there exists
:class:`~matplotlib.artist.Artist` subclasses which can be used for
convenient Path visualisation - the two most frequently used of these are
:class:`~matplotlib.patches.PathPatch` and
:class:`~matplotlib.collections.PathCollection`.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six

import math
from weakref import WeakValueDictionary

import numpy as np
from numpy import ma

from matplotlib import _path
from matplotlib.cbook import simple_linear_interpolation, maxdict
from matplotlib import rcParams


class Path(object):
    """
    :class:`Path` represents a series of possibly disconnected,
    possibly closed, line and curve segments.

    The underlying storage is made up of two parallel numpy arrays:
      - *vertices*: an Nx2 float array of vertices
      - *codes*: an N-length uint8 array of vertex types

    These two arrays always have the same length in the first
    dimension.  For example, to represent a cubic curve, you must
    provide three vertices as well as three codes ``CURVE3``.

    The code types are:

       - ``STOP``   :  1 vertex (ignored)
           A marker for the end of the entire path (currently not
           required and ignored)

       - ``MOVETO`` :  1 vertex
            Pick up the pen and move to the given vertex.

       - ``LINETO`` :  1 vertex
            Draw a line from the current position to the given vertex.

       - ``CURVE3`` :  1 control point, 1 endpoint
          Draw a quadratic Bezier curve from the current position,
          with the given control point, to the given end point.

       - ``CURVE4`` :  2 control points, 1 endpoint
          Draw a cubic Bezier curve from the current position, with
          the given control points, to the given end point.

       - ``CLOSEPOLY`` : 1 vertex (ignored)
          Draw a line segment to the start point of the current
          polyline.

    Users of Path objects should not access the vertices and codes
    arrays directly.  Instead, they should use :meth:`iter_segments`
    or :meth:`cleaned` to get the vertex/code pairs.  This is important,
    since many :class:`Path` objects, as an optimization, do not store a
    *codes* at all, but have a default one provided for them by
    :meth:`iter_segments`.

    .. note::

        The vertices and codes arrays should be treated as
        immutable -- there are a number of optimizations and assumptions
        made up front in the constructor that will not change when the
        data changes.

    """

    # Path codes
    STOP = 0         # 1 vertex
    MOVETO = 1       # 1 vertex
    LINETO = 2       # 1 vertex
    CURVE3 = 3       # 2 vertices
    CURVE4 = 4       # 3 vertices
    CLOSEPOLY = 79   # 1 vertex

    #: A dictionary mapping Path codes to the number of vertices that the
    #: code expects.
    NUM_VERTICES_FOR_CODE = {STOP: 1,
                             MOVETO: 1,
                             LINETO: 1,
                             CURVE3: 2,
                             CURVE4: 3,
                             CLOSEPOLY: 1}

    code_type = np.uint8

    def __init__(self, vertices, codes=None, _interpolation_steps=1,
                 closed=False, readonly=False):
        """
        Create a new path with the given vertices and codes.

        Parameters
        ----------
        vertices : array_like
            The ``(n, 2)`` float array, masked array or sequence of pairs
            representing the vertices of the path.

            If *vertices* contains masked values, they will be converted
            to NaNs which are then handled correctly by the Agg
            PathIterator and other consumers of path data, such as
            :meth:`iter_segments`.
        codes : {None, array_like}, optional
            n-length array integers representing the codes of the path.
            If not None, codes must be the same length as vertices.
            If None, *vertices* will be treated as a series of line segments.
        _interpolation_steps : int, optional
            Used as a hint to certain projections, such as Polar, that this
            path should be linearly interpolated immediately before drawing.
            This attribute is primarily an implementation detail and is not
            intended for public use.
        closed : bool, optional
            If *codes* is None and closed is True, vertices will be treated as
            line segments of a closed polygon.
        readonly : bool, optional
            Makes the path behave in an immutable way and sets the vertices
            and codes as read-only arrays.
        """
        if ma.isMaskedArray(vertices):
            vertices = vertices.astype(np.float_).filled(np.nan)
        else:
            vertices = np.asarray(vertices, np.float_)

        if (vertices.ndim != 2) or (vertices.shape[1] != 2):
            msg = "'vertices' must be a 2D list or array with shape Nx2"
            raise ValueError(msg)

        if codes is not None:
            codes = np.asarray(codes, self.code_type)
            if (codes.ndim != 1) or len(codes) != len(vertices):
                msg = ("'codes' must be a 1D list or array with the same"
                       " length of 'vertices'")
                raise ValueError(msg)
            if len(codes) and codes[0] != self.MOVETO:
                msg = ("The first element of 'code' must be equal to 'MOVETO':"
                       " {0}")
                raise ValueError(msg.format(self.MOVETO))
        elif closed:
            codes = np.empty(len(vertices), dtype=self.code_type)
            codes[0] = self.MOVETO
            codes[1:-1] = self.LINETO
            codes[-1] = self.CLOSEPOLY

        self._vertices = vertices
        self._codes = codes
        self._interpolation_steps = _interpolation_steps
        self._update_values()

        if readonly:
            self._vertices.flags.writeable = False
            if self._codes is not None:
                self._codes.flags.writeable = False
            self._readonly = True
        else:
            self._readonly = False

    @classmethod
    def _fast_from_codes_and_verts(cls, verts, codes, internals=None):
        """
        Creates a Path instance without the expense of calling the constructor

        Parameters
        ----------
        verts : numpy array
        codes : numpy array
        internals : dict or None
            The attributes that the resulting path should have.
            Allowed keys are ``readonly``, ``should_simplify``,
            ``simplify_threshold``, ``has_nonfinite`` and
            ``interpolation_steps``.

        """
        internals = internals or {}
        pth = cls.__new__(cls)
        if ma.isMaskedArray(verts):
            verts = verts.astype(np.float_).filled(np.nan)
        else:
            verts = np.asarray(verts, np.float_)
        pth._vertices = verts
        pth._codes = codes
        pth._readonly = internals.pop('readonly', False)
        pth.should_simplify = internals.pop('should_simplify', True)
        pth.simplify_threshold = (
            internals.pop('simplify_threshold',
                          rcParams['path.simplify_threshold'])
        )
        pth._has_nonfinite = internals.pop('has_nonfinite', False)
        pth._interpolation_steps = internals.pop('interpolation_steps', 1)
        if internals:
            raise ValueError('Unexpected internals provided to '
                             '_fast_from_codes_and_verts: '
                             '{0}'.format('\n *'.join(six.iterkeys(
                                 internals
                             ))))
        return pth

    def _update_values(self):
        self._should_simplify = (
            rcParams['path.simplify'] and
            (len(self._vertices) >= 128 and
             (self._codes is None or np.all(self._codes <= Path.LINETO)))
        )
        self._simplify_threshold = rcParams['path.simplify_threshold']
        self._has_nonfinite = not np.isfinite(self._vertices).all()

    @property
    def vertices(self):
        """
        The list of vertices in the `Path` as an Nx2 numpy array.
        """
        return self._vertices

    @vertices.setter
    def vertices(self, vertices):
        if self._readonly:
            raise AttributeError("Can't set vertices on a readonly Path")
        self._vertices = vertices
        self._update_values()

    @property
    def codes(self):
        """
        The list of codes in the `Path` as a 1-D numpy array.  Each
        code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4`
        or `CLOSEPOLY`.  For codes that correspond to more than one
        vertex (`CURVE3` and `CURVE4`), that code will be repeated so
        that the length of `self.vertices` and `self.codes` is always
        the same.
        """
        return self._codes

    @codes.setter
    def codes(self, codes):
        if self._readonly:
            raise AttributeError("Can't set codes on a readonly Path")
        self._codes = codes
        self._update_values()

    @property
    def simplify_threshold(self):
        """
        The fraction of a pixel difference below which vertices will
        be simplified out.
        """
        return self._simplify_threshold

    @simplify_threshold.setter
    def simplify_threshold(self, threshold):
        self._simplify_threshold = threshold

    @property
    def has_nonfinite(self):
        """
        `True` if the vertices array has nonfinite values.
        """
        return self._has_nonfinite

    @property
    def should_simplify(self):
        """
        `True` if the vertices array should be simplified.
        """
        return self._should_simplify

    @should_simplify.setter
    def should_simplify(self, should_simplify):
        self._should_simplify = should_simplify

    @property
    def readonly(self):
        """
        `True` if the `Path` is read-only.
        """
        return self._readonly

    def __copy__(self):
        """
        Returns a shallow copy of the `Path`, which will share the
        vertices and codes with the source `Path`.
        """
        import copy
        return copy.copy(self)

    copy = __copy__

    def __deepcopy__(self):
        """
        Returns a deepcopy of the `Path`.  The `Path` will not be
        readonly, even if the source `Path` is.
        """
        return self.__class__(
            self.vertices.copy(), self.codes.copy(),
            _interpolation_steps=self._interpolation_steps)

    deepcopy = __deepcopy__

    @classmethod
    def make_compound_path_from_polys(cls, XY):
        """
        Make a compound path object to draw a number
        of polygons with equal numbers of sides XY is a (numpolys x
        numsides x 2) numpy array of vertices.  Return object is a
        :class:`Path`

        .. plot:: mpl_examples/api/histogram_path_demo.py

        """

        # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for
        # the CLOSEPOLY; the vert for the closepoly is ignored but we still
        # need it to keep the codes aligned with the vertices
        numpolys, numsides, two = XY.shape
        if two != 2:
            raise ValueError("The third dimension of 'XY' must be 2")
        stride = numsides + 1
        nverts = numpolys * stride
        verts = np.zeros((nverts, 2))
        codes = np.ones(nverts, int) * cls.LINETO
        codes[0::stride] = cls.MOVETO
        codes[numsides::stride] = cls.CLOSEPOLY
        for i in range(numsides):
            verts[i::stride] = XY[:, i]

        return cls(verts, codes)

    @classmethod
    def make_compound_path(cls, *args):
        """Make a compound path from a list of Path objects."""
        # Handle an empty list in args (i.e. no args).
        if not args:
            return Path(np.empty([0, 2], dtype=np.float32))

        lengths = [len(x) for x in args]
        total_length = sum(lengths)

        vertices = np.vstack([x.vertices for x in args])
        vertices.reshape((total_length, 2))

        codes = np.empty(total_length, dtype=cls.code_type)
        i = 0
        for path in args:
            if path.codes is None:
                codes[i] = cls.MOVETO
                codes[i + 1:i + len(path.vertices)] = cls.LINETO
            else:
                codes[i:i + len(path.codes)] = path.codes
            i += len(path.vertices)

        return cls(vertices, codes)

    def __repr__(self):
        return "Path(%r, %r)" % (self.vertices, self.codes)

    def __len__(self):
        return len(self.vertices)

    def iter_segments(self, transform=None, remove_nans=True, clip=None,
                      snap=False, stroke_width=1.0, simplify=None,
                      curves=True, sketch=None):
        """
        Iterates over all of the curve segments in the path.  Each
        iteration returns a 2-tuple (*vertices*, *code*), where
        *vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is
        one of the :class:`Path` codes.

        Additionally, this method can provide a number of standard
        cleanups and conversions to the path.

        Parameters
        ----------
        transform : None or :class:`~matplotlib.transforms.Transform` instance
            If not None, the given affine transformation will
            be applied to the path.
        remove_nans : {False, True}, optional
            If True, will remove all NaNs from the path and
            insert MOVETO commands to skip over them.
        clip : None or sequence, optional
            If not None, must be a four-tuple (x1, y1, x2, y2)
            defining a rectangle in which to clip the path.
        snap : None or bool, optional
            If None, auto-snap to pixels, to reduce
            fuzziness of rectilinear lines.  If True, force snapping, and
            if False, don't snap.
        stroke_width : float, optional
            The width of the stroke being drawn.  Needed
             as a hint for the snapping algorithm.
        simplify : None or bool, optional
            If True, perform simplification, to remove
             vertices that do not affect the appearance of the path.  If
             False, perform no simplification.  If None, use the
             should_simplify member variable.
        curves : {True, False}, optional
            If True, curve segments will be returned as curve
            segments.  If False, all curves will be converted to line
            segments.
        sketch : None or sequence, optional
            If not None, must be a 3-tuple of the form
            (scale, length, randomness), representing the sketch
            parameters.
        """
        if not len(self):
            return

        cleaned = self.cleaned(transform=transform,
                               remove_nans=remove_nans, clip=clip,
                               snap=snap, stroke_width=stroke_width,
                               simplify=simplify, curves=curves,
                               sketch=sketch)
        vertices = cleaned.vertices
        codes = cleaned.codes
        len_vertices = vertices.shape[0]

        # Cache these object lookups for performance in the loop.
        NUM_VERTICES_FOR_CODE = self.NUM_VERTICES_FOR_CODE
        STOP = self.STOP

        i = 0
        while i < len_vertices:
            code = codes[i]
            if code == STOP:
                return
            else:
                num_vertices = NUM_VERTICES_FOR_CODE[code]
                curr_vertices = vertices[i:i+num_vertices].flatten()
                yield curr_vertices, code
                i += num_vertices

    def cleaned(self, transform=None, remove_nans=False, clip=None,
                quantize=False, simplify=False, curves=False,
                stroke_width=1.0, snap=False, sketch=None):
        """
        Cleans up the path according to the parameters returning a new
        Path instance.

        .. seealso::

            See :meth:`iter_segments` for details of the keyword arguments.

        Returns
        -------
        Path instance with cleaned up vertices and codes.

        """
        vertices, codes = _path.cleanup_path(self, transform,
                                             remove_nans, clip,
                                             snap, stroke_width,
                                             simplify, curves, sketch)
        internals = {'should_simplify': self.should_simplify and not simplify,
                     'has_nonfinite': self.has_nonfinite and not remove_nans,
                     'simplify_threshold': self.simplify_threshold,
                     'interpolation_steps': self._interpolation_steps}
        return Path._fast_from_codes_and_verts(vertices, codes, internals)

    def transformed(self, transform):
        """
        Return a transformed copy of the path.

        .. seealso::

            :class:`matplotlib.transforms.TransformedPath`
                A specialized path class that will cache the
                transformed result and automatically update when the
                transform changes.
        """
        return Path(transform.transform(self.vertices), self.codes,
                    self._interpolation_steps)

    def contains_point(self, point, transform=None, radius=0.0):
        """
        Returns *True* if the path contains the given point.

        If *transform* is not *None*, the path will be transformed
        before performing the test.

        *radius* allows the path to be made slightly larger or
        smaller.
        """
        if transform is not None:
            transform = transform.frozen()
        result = _path.point_in_path(point[0], point[1], radius, self,
                                     transform)
        return result

    def contains_points(self, points, transform=None, radius=0.0):
        """
        Returns a bool array which is *True* if the path contains the
        corresponding point.

        If *transform* is not *None*, the path will be transformed
        before performing the test.

        *radius* allows the path to be made slightly larger or
        smaller.
        """
        if transform is not None:
            transform = transform.frozen()
        result = _path.points_in_path(points, radius, self, transform)
        return result

    def contains_path(self, path, transform=None):
        """
        Returns *True* if this path completely contains the given path.

        If *transform* is not *None*, the path will be transformed
        before performing the test.
        """
        if transform is not None:
            transform = transform.frozen()
        return _path.path_in_path(self, None, path, transform)

    def get_extents(self, transform=None):
        """
        Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the
        path.

        Unlike computing the extents on the *vertices* alone, this
        algorithm will take into account the curves and deal with
        control points appropriately.
        """
        from .transforms import Bbox
        path = self
        if transform is not None:
            transform = transform.frozen()
            if not transform.is_affine:
                path = self.transformed(transform)
                transform = None
        return Bbox(_path.get_path_extents(path, transform))

    def intersects_path(self, other, filled=True):
        """
        Returns *True* if this path intersects another given path.

        *filled*, when True, treats the paths as if they were filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        return _path.path_intersects_path(self, other, filled)

    def intersects_bbox(self, bbox, filled=True):
        """
        Returns *True* if this path intersects a given
        :class:`~matplotlib.transforms.Bbox`.

        *filled*, when True, treats the path as if it was filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        from .transforms import BboxTransformTo
        rectangle = self.unit_rectangle().transformed(
            BboxTransformTo(bbox))
        result = self.intersects_path(rectangle, filled)
        return result

    def interpolated(self, steps):
        """
        Returns a new path resampled to length N x steps.  Does not
        currently handle interpolating curves.
        """
        if steps == 1:
            return self

        vertices = simple_linear_interpolation(self.vertices, steps)
        codes = self.codes
        if codes is not None:
            new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, ))
            new_codes[0::steps] = codes
        else:
            new_codes = None
        return Path(vertices, new_codes)

    def to_polygons(self, transform=None, width=0, height=0):
        """
        Convert this path to a list of polygons.  Each polygon is an
        Nx2 array of vertices.  In other words, each polygon has no
        ``MOVETO`` instructions or curves.  This is useful for
        displaying in backends that do not support compound paths or
        Bezier curves, such as GDK.

        If *width* and *height* are both non-zero then the lines will
        be simplified so that vertices outside of (0, 0), (width,
        height) will be clipped.
        """
        if len(self.vertices) == 0:
            return []

        if transform is not None:
            transform = transform.frozen()

        if self.codes is None and (width == 0 or height == 0):
            if transform is None:
                return [self.vertices]
            else:
                return [transform.transform(self.vertices)]

        # Deal with the case where there are curves and/or multiple
        # subpaths (using extension code)
        return _path.convert_path_to_polygons(self, transform, width, height)

    _unit_rectangle = None

    @classmethod
    def unit_rectangle(cls):
        """
        Return a :class:`Path` instance of the unit rectangle
        from (0, 0) to (1, 1).
        """
        if cls._unit_rectangle is None:
            cls._unit_rectangle = \
                cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0],
                     [0.0, 0.0]],
                    [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO,
                     cls.CLOSEPOLY],
                    readonly=True)
        return cls._unit_rectangle

    _unit_regular_polygons = WeakValueDictionary()

    @classmethod
    def unit_regular_polygon(cls, numVertices):
        """
        Return a :class:`Path` instance for a unit regular
        polygon with the given *numVertices* and radius of 1.0,
        centered at (0, 0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_polygons.get(numVertices)
        else:
            path = None
        if path is None:
            theta = (2*np.pi/numVertices *
                     np.arange(numVertices + 1).reshape((numVertices + 1, 1)))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            verts = np.concatenate((np.cos(theta), np.sin(theta)), 1)
            codes = np.empty((numVertices + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes, readonly=True)
            if numVertices <= 16:
                cls._unit_regular_polygons[numVertices] = path
        return path

    _unit_regular_stars = WeakValueDictionary()

    @classmethod
    def unit_regular_star(cls, numVertices, innerCircle=0.5):
        """
        Return a :class:`Path` for a unit regular star
        with the given numVertices and radius of 1.0, centered at (0,
        0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_stars.get((numVertices, innerCircle))
        else:
            path = None
        if path is None:
            ns2 = numVertices * 2
            theta = (2*np.pi/ns2 * np.arange(ns2 + 1))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            r = np.ones(ns2 + 1)
            r[1::2] = innerCircle
            verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose()
            codes = np.empty((ns2 + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes, readonly=True)
            if numVertices <= 16:
                cls._unit_regular_polygons[(numVertices, innerCircle)] = path
        return path

    @classmethod
    def unit_regular_asterisk(cls, numVertices):
        """
        Return a :class:`Path` for a unit regular
        asterisk with the given numVertices and radius of 1.0,
        centered at (0, 0).
        """
        return cls.unit_regular_star(numVertices, 0.0)

    _unit_circle = None

    @classmethod
    def unit_circle(cls):
        """
        Return the readonly :class:`Path` of the unit circle.

        For most cases, :func:`Path.circle` will be what you want.

        """
        if cls._unit_circle is None:
            cls._unit_circle = cls.circle(center=(0, 0), radius=1,
                                          readonly=True)
        return cls._unit_circle

    @classmethod
    def circle(cls, center=(0., 0.), radius=1., readonly=False):
        """
        Return a Path representing a circle of a given radius and center.

        Parameters
        ----------
        center : pair of floats
            The center of the circle. Default ``(0, 0)``.
        radius : float
            The radius of the circle. Default is 1.
        readonly : bool
            Whether the created path should have the "readonly" argument
            set when creating the Path instance.

        Notes
        -----
        The circle is approximated using cubic Bezier curves.  This
        uses 8 splines around the circle using the approach presented
        here:

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.

        """
        MAGIC = 0.2652031
        SQRTHALF = np.sqrt(0.5)
        MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)

        vertices = np.array([[0.0, -1.0],

                             [MAGIC, -1.0],
                             [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                             [SQRTHALF, -SQRTHALF],

                             [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                             [1.0, -MAGIC],
                             [1.0, 0.0],

                             [1.0, MAGIC],
                             [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                             [SQRTHALF, SQRTHALF],

                             [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                             [MAGIC, 1.0],
                             [0.0, 1.0],

                             [-MAGIC, 1.0],
                             [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45],
                             [-SQRTHALF, SQRTHALF],

                             [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45],
                             [-1.0, MAGIC],
                             [-1.0, 0.0],

                             [-1.0, -MAGIC],
                             [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45],
                             [-SQRTHALF, -SQRTHALF],

                             [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45],
                             [-MAGIC, -1.0],
                             [0.0, -1.0],

                             [0.0, -1.0]],
                            dtype=np.float_)

        codes = [cls.CURVE4] * 26
        codes[0] = cls.MOVETO
        codes[-1] = cls.CLOSEPOLY
        return Path(vertices * radius + center, codes, readonly=readonly)

    _unit_circle_righthalf = None

    @classmethod
    def unit_circle_righthalf(cls):
        """
        Return a :class:`Path` of the right half
        of a unit circle. The circle is approximated using cubic Bezier
        curves.  This uses 4 splines around the circle using the approach
        presented here:

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
        """
        if cls._unit_circle_righthalf is None:
            MAGIC = 0.2652031
            SQRTHALF = np.sqrt(0.5)
            MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)

            vertices = np.array(
                [[0.0, -1.0],

                 [MAGIC, -1.0],
                 [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                 [SQRTHALF, -SQRTHALF],

                 [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                 [1.0, -MAGIC],
                 [1.0, 0.0],

                 [1.0, MAGIC],
                 [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                 [SQRTHALF, SQRTHALF],

                 [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                 [MAGIC, 1.0],
                 [0.0, 1.0],

                 [0.0, -1.0]],

                np.float_)

            codes = cls.CURVE4 * np.ones(14)
            codes[0] = cls.MOVETO
            codes[-1] = cls.CLOSEPOLY

            cls._unit_circle_righthalf = cls(vertices, codes, readonly=True)
        return cls._unit_circle_righthalf

    @classmethod
    def arc(cls, theta1, theta2, n=None, is_wedge=False):
        """
        Return an arc on the unit circle from angle
        *theta1* to angle *theta2* (in degrees).

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.

           Masionobe, L.  2003.  `Drawing an elliptical arc using
           polylines, quadratic or cubic Bezier curves
           <http://www.spaceroots.org/documents/ellipse/index.html>`_.
        """
        # degrees to radians
        theta1 *= np.pi / 180.0
        theta2 *= np.pi / 180.0

        twopi = np.pi * 2.0
        halfpi = np.pi * 0.5

        eta1 = np.arctan2(np.sin(theta1), np.cos(theta1))
        eta2 = np.arctan2(np.sin(theta2), np.cos(theta2))
        eta2 -= twopi * np.floor((eta2 - eta1) / twopi)

        # number of curve segments to make
        if n is None:
            n = int(2 ** np.ceil((eta2 - eta1) / halfpi))
        if n < 1:
            raise ValueError("n must be >= 1 or None")

        deta = (eta2 - eta1) / n
        t = np.tan(0.5 * deta)
        alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0

        steps = np.linspace(eta1, eta2, n + 1, True)
        cos_eta = np.cos(steps)
        sin_eta = np.sin(steps)

        xA = cos_eta[:-1]
        yA = sin_eta[:-1]
        xA_dot = -yA
        yA_dot = xA

        xB = cos_eta[1:]
        yB = sin_eta[1:]
        xB_dot = -yB
        yB_dot = xB

        if is_wedge:
            length = n * 3 + 4
            vertices = np.zeros((length, 2), np.float_)
            codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
            vertices[1] = [xA[0], yA[0]]
            codes[0:2] = [cls.MOVETO, cls.LINETO]
            codes[-2:] = [cls.LINETO, cls.CLOSEPOLY]
            vertex_offset = 2
            end = length - 2
        else:
            length = n * 3 + 1
            vertices = np.empty((length, 2), np.float_)
            codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
            vertices[0] = [xA[0], yA[0]]
            codes[0] = cls.MOVETO
            vertex_offset = 1
            end = length

        vertices[vertex_offset:end:3, 0] = xA + alpha * xA_dot
        vertices[vertex_offset:end:3, 1] = yA + alpha * yA_dot
        vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot
        vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot
        vertices[vertex_offset+2:end:3, 0] = xB
        vertices[vertex_offset+2:end:3, 1] = yB

        return cls(vertices, codes, readonly=True)

    @classmethod
    def wedge(cls, theta1, theta2, n=None):
        """
        Return a wedge of the unit circle from angle
        *theta1* to angle *theta2* (in degrees).

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.
        """
        return cls.arc(theta1, theta2, n, True)

    _hatch_dict = maxdict(8)

    @classmethod
    def hatch(cls, hatchpattern, density=6):
        """
        Given a hatch specifier, *hatchpattern*, generates a Path that
        can be used in a repeated hatching pattern.  *density* is the
        number of lines per unit square.
        """
        from matplotlib.hatch import get_path

        if hatchpattern is None:
            return None

        hatch_path = cls._hatch_dict.get((hatchpattern, density))
        if hatch_path is not None:
            return hatch_path

        hatch_path = get_path(hatchpattern, density)
        cls._hatch_dict[(hatchpattern, density)] = hatch_path
        return hatch_path

    def clip_to_bbox(self, bbox, inside=True):
        """
        Clip the path to the given bounding box.

        The path must be made up of one or more closed polygons.  This
        algorithm will not behave correctly for unclosed paths.

        If *inside* is `True`, clip to the inside of the box, otherwise
        to the outside of the box.
        """
        # Use make_compound_path_from_polys
        verts = _path.clip_path_to_rect(self, bbox, inside)
        paths = [Path(poly) for poly in verts]
        return self.make_compound_path(*paths)


def get_path_collection_extents(
        master_transform, paths, transforms, offsets, offset_transform):
    """
    Given a sequence of :class:`Path` objects,
    :class:`~matplotlib.transforms.Transform` objects and offsets, as
    found in a :class:`~matplotlib.collections.PathCollection`,
    returns the bounding box that encapsulates all of them.

    *master_transform* is a global transformation to apply to all paths

    *paths* is a sequence of :class:`Path` instances.

    *transforms* is a sequence of
    :class:`~matplotlib.transforms.Affine2D` instances.

    *offsets* is a sequence of (x, y) offsets (or an Nx2 array)

    *offset_transform* is a :class:`~matplotlib.transforms.Affine2D`
    to apply to the offsets before applying the offset to the path.

    The way that *paths*, *transforms* and *offsets* are combined
    follows the same method as for collections.  Each is iterated over
    independently, so if you have 3 paths, 2 transforms and 1 offset,
    their combinations are as follows:

        (A, A, A), (B, B, A), (C, A, A)
    """
    from .transforms import Bbox
    if len(paths) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_path.get_path_collection_extents(
        master_transform, paths, np.atleast_3d(transforms),
        offsets, offset_transform))


def get_paths_extents(paths, transforms=[]):
    """
    Given a sequence of :class:`Path` objects and optional
    :class:`~matplotlib.transforms.Transform` objects, returns the
    bounding box that encapsulates all of them.

    *paths* is a sequence of :class:`Path` instances.

    *transforms* is an optional sequence of
    :class:`~matplotlib.transforms.Affine2D` instances to apply to
    each path.
    """
    from .transforms import Bbox, Affine2D
    if len(paths) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_path.get_path_collection_extents(
        Affine2D(), paths, transforms, [], Affine2D()))


def _define_deprecated_functions(ns):
    from .cbook import deprecated

    # The C++ functions are not meant to be used directly.
    # Users should use the more pythonic wrappers in the Path
    # class instead.
    for func, alternative in [
            ('point_in_path', 'path.Path.contains_point'),
            ('get_path_extents', 'path.Path.get_extents'),
            ('point_in_path_collection', 'collection.Collection.contains'),
            ('path_in_path', 'path.Path.contains_path'),
            ('path_intersects_path', 'path.Path.intersects_path'),
            ('convert_path_to_polygons', 'path.Path.to_polygons'),
            ('cleanup_path', 'path.Path.cleaned'),
            ('points_in_path', 'path.Path.contains_points'),
            ('clip_path_to_rect', 'path.Path.clip_to_bbox')]:
        ns[func] = deprecated(
            since='1.3', alternative=alternative)(getattr(_path, func))


_define_deprecated_functions(locals())