This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/scale.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six

import numpy as np
from numpy import ma

from matplotlib.cbook import dedent
from matplotlib.ticker import (NullFormatter, ScalarFormatter,
                               LogFormatterMathtext, LogitFormatter)
from matplotlib.ticker import (NullLocator, LogLocator, AutoLocator,
                               SymmetricalLogLocator, LogitLocator)
from matplotlib.transforms import Transform, IdentityTransform
from matplotlib import docstring


class ScaleBase(object):
    """
    The base class for all scales.

    Scales are separable transformations, working on a single dimension.

    Any subclasses will want to override:

      - :attr:`name`
      - :meth:`get_transform`
      - :meth:`set_default_locators_and_formatters`

    And optionally:
      - :meth:`limit_range_for_scale`
    """
    def get_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform` object
        associated with this scale.
        """
        raise NotImplementedError()

    def set_default_locators_and_formatters(self, axis):
        """
        Set the :class:`~matplotlib.ticker.Locator` and
        :class:`~matplotlib.ticker.Formatter` objects on the given
        axis to match this scale.
        """
        raise NotImplementedError()

    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Returns the range *vmin*, *vmax*, possibly limited to the
        domain supported by this scale.

        *minpos* should be the minimum positive value in the data.
         This is used by log scales to determine a minimum value.
        """
        return vmin, vmax


class LinearScale(ScaleBase):
    """
    The default linear scale.
    """

    name = 'linear'

    def __init__(self, axis, **kwargs):
        pass

    def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to reasonable defaults for
        linear scaling.
        """
        axis.set_major_locator(AutoLocator())
        axis.set_major_formatter(ScalarFormatter())
        axis.set_minor_locator(NullLocator())
        axis.set_minor_formatter(NullFormatter())

    def get_transform(self):
        """
        The transform for linear scaling is just the
        :class:`~matplotlib.transforms.IdentityTransform`.
        """
        return IdentityTransform()


def _mask_non_positives(a):
    """
    Return a Numpy array where all non-positive values are
    replaced with NaNs. If there are no non-positive values, the
    original array is returned.
    """
    mask = a <= 0.0
    if mask.any():
        return np.where(mask, np.nan, a)
    return a


def _clip_non_positives(a):
    a = np.array(a, float)
    a[a <= 0.0] = 1e-300
    return a


class LogTransformBase(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, nonpos):
        Transform.__init__(self)
        if nonpos == 'mask':
            self._handle_nonpos = _mask_non_positives
        else:
            self._handle_nonpos = _clip_non_positives


class Log10Transform(LogTransformBase):
    base = 10.0

    def transform_non_affine(self, a):
        a = self._handle_nonpos(a * 10.0)
        return np.log10(a)

    def inverted(self):
        return InvertedLog10Transform()


class InvertedLog10Transform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True
    base = 10.0

    def transform_non_affine(self, a):
        return ma.power(10.0, a) / 10.0

    def inverted(self):
        return Log10Transform()


class Log2Transform(LogTransformBase):
    base = 2.0

    def transform_non_affine(self, a):
        a = self._handle_nonpos(a * 2.0)
        return np.log2(a)

    def inverted(self):
        return InvertedLog2Transform()


class InvertedLog2Transform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True
    base = 2.0

    def transform_non_affine(self, a):
        return ma.power(2.0, a) / 2.0

    def inverted(self):
        return Log2Transform()


class NaturalLogTransform(LogTransformBase):
    base = np.e

    def transform_non_affine(self, a):
        a = self._handle_nonpos(a * np.e)
        return np.log(a)

    def inverted(self):
        return InvertedNaturalLogTransform()


class InvertedNaturalLogTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True
    base = np.e

    def transform_non_affine(self, a):
        return ma.power(np.e, a) / np.e

    def inverted(self):
        return NaturalLogTransform()


class LogTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, base, nonpos):
        Transform.__init__(self)
        self.base = base
        if nonpos == 'mask':
            self._handle_nonpos = _mask_non_positives
        else:
            self._handle_nonpos = _clip_non_positives

    def transform_non_affine(self, a):
        a = self._handle_nonpos(a * self.base)
        return np.log(a) / np.log(self.base)

    def inverted(self):
        return InvertedLogTransform(self.base)


class InvertedLogTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, base):
        Transform.__init__(self)
        self.base = base

    def transform_non_affine(self, a):
        return ma.power(self.base, a) / self.base

    def inverted(self):
        return LogTransform(self.base)


class LogScale(ScaleBase):
    """
    A standard logarithmic scale.  Care is taken so non-positive
    values are not plotted.

    For computational efficiency (to push as much as possible to Numpy
    C code in the common cases), this scale provides different
    transforms depending on the base of the logarithm:

       - base 10 (:class:`Log10Transform`)
       - base 2 (:class:`Log2Transform`)
       - base e (:class:`NaturalLogTransform`)
       - arbitrary base (:class:`LogTransform`)
    """
    name = 'log'

    # compatibility shim
    LogTransformBase = LogTransformBase
    Log10Transform = Log10Transform
    InvertedLog10Transform = InvertedLog10Transform
    Log2Transform = Log2Transform
    InvertedLog2Transform = InvertedLog2Transform
    NaturalLogTransform = NaturalLogTransform
    InvertedNaturalLogTransform = InvertedNaturalLogTransform
    LogTransform = LogTransform
    InvertedLogTransform = InvertedLogTransform

    def __init__(self, axis, **kwargs):
        """
        *basex*/*basey*:
           The base of the logarithm

        *nonposx*/*nonposy*: ['mask' | 'clip' ]
          non-positive values in *x* or *y* can be masked as
          invalid, or clipped to a very small positive number

        *subsx*/*subsy*:
           Where to place the subticks between each major tick.
           Should be a sequence of integers.  For example, in a log10
           scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``

           will place 8 logarithmically spaced minor ticks between
           each major tick.
        """
        if axis.axis_name == 'x':
            base = kwargs.pop('basex', 10.0)
            subs = kwargs.pop('subsx', None)
            nonpos = kwargs.pop('nonposx', 'mask')
        else:
            base = kwargs.pop('basey', 10.0)
            subs = kwargs.pop('subsy', None)
            nonpos = kwargs.pop('nonposy', 'mask')

        if nonpos not in ['mask', 'clip']:
            raise ValueError("nonposx, nonposy kwarg must be 'mask' or 'clip'")

        if base == 10.0:
            self._transform = self.Log10Transform(nonpos)
        elif base == 2.0:
            self._transform = self.Log2Transform(nonpos)
        elif base == np.e:
            self._transform = self.NaturalLogTransform(nonpos)
        else:
            self._transform = self.LogTransform(base, nonpos)

        self.base = base
        self.subs = subs

    def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to specialized versions for
        log scaling.
        """
        axis.set_major_locator(LogLocator(self.base))
        axis.set_major_formatter(LogFormatterMathtext(self.base))
        axis.set_minor_locator(LogLocator(self.base, self.subs))
        axis.set_minor_formatter(NullFormatter())

    def get_transform(self):
        """
        Return a :class:`~matplotlib.transforms.Transform` instance
        appropriate for the given logarithm base.
        """
        return self._transform

    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Limit the domain to positive values.
        """
        return (vmin <= 0.0 and minpos or vmin,
                vmax <= 0.0 and minpos or vmax)


class SymmetricalLogTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, base, linthresh, linscale):
        Transform.__init__(self)
        self.base = base
        self.linthresh = linthresh
        self.linscale = linscale
        self._linscale_adj = (linscale / (1.0 - self.base ** -1))
        self._log_base = np.log(base)

    def transform_non_affine(self, a):
        sign = np.sign(a)
        masked = ma.masked_inside(a,
                                  -self.linthresh,
                                  self.linthresh,
                                  copy=False)
        log = sign * self.linthresh * (
            self._linscale_adj +
            ma.log(np.abs(masked) / self.linthresh) / self._log_base)
        if masked.mask.any():
            return ma.where(masked.mask, a * self._linscale_adj, log)
        else:
            return log

    def inverted(self):
        return InvertedSymmetricalLogTransform(self.base, self.linthresh,
                                               self.linscale)


class InvertedSymmetricalLogTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, base, linthresh, linscale):
        Transform.__init__(self)
        symlog = SymmetricalLogTransform(base, linthresh, linscale)
        self.base = base
        self.linthresh = linthresh
        self.invlinthresh = symlog.transform(linthresh)
        self.linscale = linscale
        self._linscale_adj = (linscale / (1.0 - self.base ** -1))

    def transform_non_affine(self, a):
        sign = np.sign(a)
        masked = ma.masked_inside(a, -self.invlinthresh,
                                  self.invlinthresh, copy=False)
        exp = sign * self.linthresh * (
            ma.power(self.base, (sign * (masked / self.linthresh))
            - self._linscale_adj))
        if masked.mask.any():
            return ma.where(masked.mask, a / self._linscale_adj, exp)
        else:
            return exp

    def inverted(self):
        return SymmetricalLogTransform(self.base,
                                       self.linthresh, self.linscale)


class SymmetricalLogScale(ScaleBase):
    """
    The symmetrical logarithmic scale is logarithmic in both the
    positive and negative directions from the origin.

    Since the values close to zero tend toward infinity, there is a
    need to have a range around zero that is linear.  The parameter
    *linthresh* allows the user to specify the size of this range
    (-*linthresh*, *linthresh*).
    """
    name = 'symlog'
    # compatibility shim
    SymmetricalLogTransform = SymmetricalLogTransform
    InvertedSymmetricalLogTransform = InvertedSymmetricalLogTransform

    def __init__(self, axis, **kwargs):
        """
        *basex*/*basey*:
           The base of the logarithm

        *linthreshx*/*linthreshy*:
          The range (-*x*, *x*) within which the plot is linear (to
          avoid having the plot go to infinity around zero).

        *subsx*/*subsy*:
           Where to place the subticks between each major tick.
           Should be a sequence of integers.  For example, in a log10
           scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``

           will place 8 logarithmically spaced minor ticks between
           each major tick.

        *linscalex*/*linscaley*:
           This allows the linear range (-*linthresh* to *linthresh*)
           to be stretched relative to the logarithmic range.  Its
           value is the number of decades to use for each half of the
           linear range.  For example, when *linscale* == 1.0 (the
           default), the space used for the positive and negative
           halves of the linear range will be equal to one decade in
           the logarithmic range.
        """
        if axis.axis_name == 'x':
            base = kwargs.pop('basex', 10.0)
            linthresh = kwargs.pop('linthreshx', 2.0)
            subs = kwargs.pop('subsx', None)
            linscale = kwargs.pop('linscalex', 1.0)
        else:
            base = kwargs.pop('basey', 10.0)
            linthresh = kwargs.pop('linthreshy', 2.0)
            subs = kwargs.pop('subsy', None)
            linscale = kwargs.pop('linscaley', 1.0)

        if base <= 1.0:
            raise ValueError("'basex/basey' must be larger than 1")
        if linthresh <= 0.0:
            raise ValueError("'linthreshx/linthreshy' must be positive")
        if linscale <= 0.0:
            raise ValueError("'linscalex/linthreshy' must be positive")

        self._transform = self.SymmetricalLogTransform(base,
                                                       linthresh,
                                                       linscale)

        self.base = base
        self.linthresh = linthresh
        self.linscale = linscale
        self.subs = subs

    def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to specialized versions for
        symmetrical log scaling.
        """
        axis.set_major_locator(SymmetricalLogLocator(self.get_transform()))
        axis.set_major_formatter(LogFormatterMathtext(self.base))
        axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(),
                                                     self.subs))
        axis.set_minor_formatter(NullFormatter())

    def get_transform(self):
        """
        Return a :class:`SymmetricalLogTransform` instance.
        """
        return self._transform


def _mask_non_logit(a):
    """
    Return a Numpy array where all values outside ]0, 1[ are
    replaced with NaNs. If all values are inside ]0, 1[, the original
    array is returned.
    """
    mask = (a <= 0.0) | (a >= 1.0)
    if mask.any():
        return np.where(mask, np.nan, a)
    return a


def _clip_non_logit(a):
    a = np.array(a, float)
    a[a <= 0.0] = 1e-300
    a[a >= 1.0] = 1 - 1e-300
    return a


class LogitTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, nonpos):
        Transform.__init__(self)
        if nonpos == 'mask':
            self._handle_nonpos = _mask_non_logit
        else:
            self._handle_nonpos = _clip_non_logit
        self._nonpos = nonpos

    def transform_non_affine(self, a):
        """logit transform (base 10), masked or clipped"""
        a = self._handle_nonpos(a)
        return np.log10(1.0 * a / (1.0 - a))

    def inverted(self):
        return LogisticTransform(self._nonpos)


class LogisticTransform(Transform):
    input_dims = 1
    output_dims = 1
    is_separable = True
    has_inverse = True

    def __init__(self, nonpos='mask'):
        Transform.__init__(self)
        self._nonpos = nonpos

    def transform_non_affine(self, a):
        """logistic transform (base 10)"""
        return 1.0 / (1 + 10**(-a))

    def inverted(self):
        return LogitTransform(self._nonpos)


class LogitScale(ScaleBase):
    """
    Logit scale for data between zero and one, both excluded.

    This scale is similar to a log scale close to zero and to one, and almost
    linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
    """
    name = 'logit'

    def __init__(self, axis, nonpos='mask'):
        """
        *nonpos*: ['mask' | 'clip' ]
          values beyond ]0, 1[ can be masked as invalid, or clipped to a number
          very close to 0 or 1
        """
        if nonpos not in ['mask', 'clip']:
            raise ValueError("nonposx, nonposy kwarg must be 'mask' or 'clip'")

        self._transform = LogitTransform(nonpos)

    def get_transform(self):
        """
        Return a :class:`LogitTransform` instance.
        """
        return self._transform

    def set_default_locators_and_formatters(self, axis):
        # ..., 0.01, 0.1, 0.5, 0.9, 0.99, ...
        axis.set_major_locator(LogitLocator())
        axis.set_major_formatter(LogitFormatter())
        axis.set_minor_locator(LogitLocator(minor=True))
        axis.set_minor_formatter(LogitFormatter())

    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Limit the domain to values between 0 and 1 (excluded).
        """
        return (vmin <= 0 and minpos or vmin,
                vmax >= 1 and (1 - minpos) or vmax)


_scale_mapping = {
    'linear': LinearScale,
    'log':    LogScale,
    'symlog': SymmetricalLogScale,
    'logit':  LogitScale,
    }


def get_scale_names():
    names = list(six.iterkeys(_scale_mapping))
    names.sort()
    return names


def scale_factory(scale, axis, **kwargs):
    """
    Return a scale class by name.

    ACCEPTS: [ %(names)s ]
    """
    scale = scale.lower()
    if scale is None:
        scale = 'linear'

    if scale not in _scale_mapping:
        raise ValueError("Unknown scale type '%s'" % scale)

    return _scale_mapping[scale](axis, **kwargs)
scale_factory.__doc__ = dedent(scale_factory.__doc__) % \
    {'names': " | ".join(get_scale_names())}


def register_scale(scale_class):
    """
    Register a new kind of scale.

    *scale_class* must be a subclass of :class:`ScaleBase`.
    """
    _scale_mapping[scale_class.name] = scale_class


def get_scale_docs():
    """
    Helper function for generating docstrings related to scales.
    """
    docs = []
    for name in get_scale_names():
        scale_class = _scale_mapping[name]
        docs.append("    '%s'" % name)
        docs.append("")
        class_docs = dedent(scale_class.__init__.__doc__)
        class_docs = "".join(["        %s\n" %
                              x for x in class_docs.split("\n")])
        docs.append(class_docs)
        docs.append("")
    return "\n".join(docs)


docstring.interpd.update(
    scale=' | '.join([repr(x) for x in get_scale_names()]),
    scale_docs=get_scale_docs().rstrip(),
    )