/usr/lib/python3/dist-packages/matplotlib/scale.py is in python3-matplotlib 1.5.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 | from __future__ import (absolute_import, division, print_function,
unicode_literals)
from matplotlib.externals import six
import numpy as np
from numpy import ma
from matplotlib.cbook import dedent
from matplotlib.ticker import (NullFormatter, ScalarFormatter,
LogFormatterMathtext, LogitFormatter)
from matplotlib.ticker import (NullLocator, LogLocator, AutoLocator,
SymmetricalLogLocator, LogitLocator)
from matplotlib.transforms import Transform, IdentityTransform
from matplotlib import docstring
class ScaleBase(object):
"""
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
- :attr:`name`
- :meth:`get_transform`
- :meth:`set_default_locators_and_formatters`
And optionally:
- :meth:`limit_range_for_scale`
"""
def get_transform(self):
"""
Return the :class:`~matplotlib.transforms.Transform` object
associated with this scale.
"""
raise NotImplementedError()
def set_default_locators_and_formatters(self, axis):
"""
Set the :class:`~matplotlib.ticker.Locator` and
:class:`~matplotlib.ticker.Formatter` objects on the given
axis to match this scale.
"""
raise NotImplementedError()
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Returns the range *vmin*, *vmax*, possibly limited to the
domain supported by this scale.
*minpos* should be the minimum positive value in the data.
This is used by log scales to determine a minimum value.
"""
return vmin, vmax
class LinearScale(ScaleBase):
"""
The default linear scale.
"""
name = 'linear'
def __init__(self, axis, **kwargs):
pass
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to reasonable defaults for
linear scaling.
"""
axis.set_major_locator(AutoLocator())
axis.set_major_formatter(ScalarFormatter())
axis.set_minor_locator(NullLocator())
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
The transform for linear scaling is just the
:class:`~matplotlib.transforms.IdentityTransform`.
"""
return IdentityTransform()
def _mask_non_positives(a):
"""
Return a Numpy array where all non-positive values are
replaced with NaNs. If there are no non-positive values, the
original array is returned.
"""
mask = a <= 0.0
if mask.any():
return np.where(mask, np.nan, a)
return a
def _clip_non_positives(a):
a = np.array(a, float)
a[a <= 0.0] = 1e-300
return a
class LogTransformBase(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, nonpos):
Transform.__init__(self)
if nonpos == 'mask':
self._handle_nonpos = _mask_non_positives
else:
self._handle_nonpos = _clip_non_positives
class Log10Transform(LogTransformBase):
base = 10.0
def transform_non_affine(self, a):
a = self._handle_nonpos(a * 10.0)
return np.log10(a)
def inverted(self):
return InvertedLog10Transform()
class InvertedLog10Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
base = 10.0
def transform_non_affine(self, a):
return ma.power(10.0, a) / 10.0
def inverted(self):
return Log10Transform()
class Log2Transform(LogTransformBase):
base = 2.0
def transform_non_affine(self, a):
a = self._handle_nonpos(a * 2.0)
return np.log2(a)
def inverted(self):
return InvertedLog2Transform()
class InvertedLog2Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
base = 2.0
def transform_non_affine(self, a):
return ma.power(2.0, a) / 2.0
def inverted(self):
return Log2Transform()
class NaturalLogTransform(LogTransformBase):
base = np.e
def transform_non_affine(self, a):
a = self._handle_nonpos(a * np.e)
return np.log(a)
def inverted(self):
return InvertedNaturalLogTransform()
class InvertedNaturalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
base = np.e
def transform_non_affine(self, a):
return ma.power(np.e, a) / np.e
def inverted(self):
return NaturalLogTransform()
class LogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, base, nonpos):
Transform.__init__(self)
self.base = base
if nonpos == 'mask':
self._handle_nonpos = _mask_non_positives
else:
self._handle_nonpos = _clip_non_positives
def transform_non_affine(self, a):
a = self._handle_nonpos(a * self.base)
return np.log(a) / np.log(self.base)
def inverted(self):
return InvertedLogTransform(self.base)
class InvertedLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, base):
Transform.__init__(self)
self.base = base
def transform_non_affine(self, a):
return ma.power(self.base, a) / self.base
def inverted(self):
return LogTransform(self.base)
class LogScale(ScaleBase):
"""
A standard logarithmic scale. Care is taken so non-positive
values are not plotted.
For computational efficiency (to push as much as possible to Numpy
C code in the common cases), this scale provides different
transforms depending on the base of the logarithm:
- base 10 (:class:`Log10Transform`)
- base 2 (:class:`Log2Transform`)
- base e (:class:`NaturalLogTransform`)
- arbitrary base (:class:`LogTransform`)
"""
name = 'log'
# compatibility shim
LogTransformBase = LogTransformBase
Log10Transform = Log10Transform
InvertedLog10Transform = InvertedLog10Transform
Log2Transform = Log2Transform
InvertedLog2Transform = InvertedLog2Transform
NaturalLogTransform = NaturalLogTransform
InvertedNaturalLogTransform = InvertedNaturalLogTransform
LogTransform = LogTransform
InvertedLogTransform = InvertedLogTransform
def __init__(self, axis, **kwargs):
"""
*basex*/*basey*:
The base of the logarithm
*nonposx*/*nonposy*: ['mask' | 'clip' ]
non-positive values in *x* or *y* can be masked as
invalid, or clipped to a very small positive number
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``
will place 8 logarithmically spaced minor ticks between
each major tick.
"""
if axis.axis_name == 'x':
base = kwargs.pop('basex', 10.0)
subs = kwargs.pop('subsx', None)
nonpos = kwargs.pop('nonposx', 'mask')
else:
base = kwargs.pop('basey', 10.0)
subs = kwargs.pop('subsy', None)
nonpos = kwargs.pop('nonposy', 'mask')
if nonpos not in ['mask', 'clip']:
raise ValueError("nonposx, nonposy kwarg must be 'mask' or 'clip'")
if base == 10.0:
self._transform = self.Log10Transform(nonpos)
elif base == 2.0:
self._transform = self.Log2Transform(nonpos)
elif base == np.e:
self._transform = self.NaturalLogTransform(nonpos)
else:
self._transform = self.LogTransform(base, nonpos)
self.base = base
self.subs = subs
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to specialized versions for
log scaling.
"""
axis.set_major_locator(LogLocator(self.base))
axis.set_major_formatter(LogFormatterMathtext(self.base))
axis.set_minor_locator(LogLocator(self.base, self.subs))
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
Return a :class:`~matplotlib.transforms.Transform` instance
appropriate for the given logarithm base.
"""
return self._transform
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Limit the domain to positive values.
"""
return (vmin <= 0.0 and minpos or vmin,
vmax <= 0.0 and minpos or vmax)
class SymmetricalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, base, linthresh, linscale):
Transform.__init__(self)
self.base = base
self.linthresh = linthresh
self.linscale = linscale
self._linscale_adj = (linscale / (1.0 - self.base ** -1))
self._log_base = np.log(base)
def transform_non_affine(self, a):
sign = np.sign(a)
masked = ma.masked_inside(a,
-self.linthresh,
self.linthresh,
copy=False)
log = sign * self.linthresh * (
self._linscale_adj +
ma.log(np.abs(masked) / self.linthresh) / self._log_base)
if masked.mask.any():
return ma.where(masked.mask, a * self._linscale_adj, log)
else:
return log
def inverted(self):
return InvertedSymmetricalLogTransform(self.base, self.linthresh,
self.linscale)
class InvertedSymmetricalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, base, linthresh, linscale):
Transform.__init__(self)
symlog = SymmetricalLogTransform(base, linthresh, linscale)
self.base = base
self.linthresh = linthresh
self.invlinthresh = symlog.transform(linthresh)
self.linscale = linscale
self._linscale_adj = (linscale / (1.0 - self.base ** -1))
def transform_non_affine(self, a):
sign = np.sign(a)
masked = ma.masked_inside(a, -self.invlinthresh,
self.invlinthresh, copy=False)
exp = sign * self.linthresh * (
ma.power(self.base, (sign * (masked / self.linthresh))
- self._linscale_adj))
if masked.mask.any():
return ma.where(masked.mask, a / self._linscale_adj, exp)
else:
return exp
def inverted(self):
return SymmetricalLogTransform(self.base,
self.linthresh, self.linscale)
class SymmetricalLogScale(ScaleBase):
"""
The symmetrical logarithmic scale is logarithmic in both the
positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a
need to have a range around zero that is linear. The parameter
*linthresh* allows the user to specify the size of this range
(-*linthresh*, *linthresh*).
"""
name = 'symlog'
# compatibility shim
SymmetricalLogTransform = SymmetricalLogTransform
InvertedSymmetricalLogTransform = InvertedSymmetricalLogTransform
def __init__(self, axis, **kwargs):
"""
*basex*/*basey*:
The base of the logarithm
*linthreshx*/*linthreshy*:
The range (-*x*, *x*) within which the plot is linear (to
avoid having the plot go to infinity around zero).
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``
will place 8 logarithmically spaced minor ticks between
each major tick.
*linscalex*/*linscaley*:
This allows the linear range (-*linthresh* to *linthresh*)
to be stretched relative to the logarithmic range. Its
value is the number of decades to use for each half of the
linear range. For example, when *linscale* == 1.0 (the
default), the space used for the positive and negative
halves of the linear range will be equal to one decade in
the logarithmic range.
"""
if axis.axis_name == 'x':
base = kwargs.pop('basex', 10.0)
linthresh = kwargs.pop('linthreshx', 2.0)
subs = kwargs.pop('subsx', None)
linscale = kwargs.pop('linscalex', 1.0)
else:
base = kwargs.pop('basey', 10.0)
linthresh = kwargs.pop('linthreshy', 2.0)
subs = kwargs.pop('subsy', None)
linscale = kwargs.pop('linscaley', 1.0)
if base <= 1.0:
raise ValueError("'basex/basey' must be larger than 1")
if linthresh <= 0.0:
raise ValueError("'linthreshx/linthreshy' must be positive")
if linscale <= 0.0:
raise ValueError("'linscalex/linthreshy' must be positive")
self._transform = self.SymmetricalLogTransform(base,
linthresh,
linscale)
self.base = base
self.linthresh = linthresh
self.linscale = linscale
self.subs = subs
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to specialized versions for
symmetrical log scaling.
"""
axis.set_major_locator(SymmetricalLogLocator(self.get_transform()))
axis.set_major_formatter(LogFormatterMathtext(self.base))
axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(),
self.subs))
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
Return a :class:`SymmetricalLogTransform` instance.
"""
return self._transform
def _mask_non_logit(a):
"""
Return a Numpy array where all values outside ]0, 1[ are
replaced with NaNs. If all values are inside ]0, 1[, the original
array is returned.
"""
mask = (a <= 0.0) | (a >= 1.0)
if mask.any():
return np.where(mask, np.nan, a)
return a
def _clip_non_logit(a):
a = np.array(a, float)
a[a <= 0.0] = 1e-300
a[a >= 1.0] = 1 - 1e-300
return a
class LogitTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, nonpos):
Transform.__init__(self)
if nonpos == 'mask':
self._handle_nonpos = _mask_non_logit
else:
self._handle_nonpos = _clip_non_logit
self._nonpos = nonpos
def transform_non_affine(self, a):
"""logit transform (base 10), masked or clipped"""
a = self._handle_nonpos(a)
return np.log10(1.0 * a / (1.0 - a))
def inverted(self):
return LogisticTransform(self._nonpos)
class LogisticTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, nonpos='mask'):
Transform.__init__(self)
self._nonpos = nonpos
def transform_non_affine(self, a):
"""logistic transform (base 10)"""
return 1.0 / (1 + 10**(-a))
def inverted(self):
return LogitTransform(self._nonpos)
class LogitScale(ScaleBase):
"""
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost
linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
"""
name = 'logit'
def __init__(self, axis, nonpos='mask'):
"""
*nonpos*: ['mask' | 'clip' ]
values beyond ]0, 1[ can be masked as invalid, or clipped to a number
very close to 0 or 1
"""
if nonpos not in ['mask', 'clip']:
raise ValueError("nonposx, nonposy kwarg must be 'mask' or 'clip'")
self._transform = LogitTransform(nonpos)
def get_transform(self):
"""
Return a :class:`LogitTransform` instance.
"""
return self._transform
def set_default_locators_and_formatters(self, axis):
# ..., 0.01, 0.1, 0.5, 0.9, 0.99, ...
axis.set_major_locator(LogitLocator())
axis.set_major_formatter(LogitFormatter())
axis.set_minor_locator(LogitLocator(minor=True))
axis.set_minor_formatter(LogitFormatter())
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Limit the domain to values between 0 and 1 (excluded).
"""
return (vmin <= 0 and minpos or vmin,
vmax >= 1 and (1 - minpos) or vmax)
_scale_mapping = {
'linear': LinearScale,
'log': LogScale,
'symlog': SymmetricalLogScale,
'logit': LogitScale,
}
def get_scale_names():
names = list(six.iterkeys(_scale_mapping))
names.sort()
return names
def scale_factory(scale, axis, **kwargs):
"""
Return a scale class by name.
ACCEPTS: [ %(names)s ]
"""
scale = scale.lower()
if scale is None:
scale = 'linear'
if scale not in _scale_mapping:
raise ValueError("Unknown scale type '%s'" % scale)
return _scale_mapping[scale](axis, **kwargs)
scale_factory.__doc__ = dedent(scale_factory.__doc__) % \
{'names': " | ".join(get_scale_names())}
def register_scale(scale_class):
"""
Register a new kind of scale.
*scale_class* must be a subclass of :class:`ScaleBase`.
"""
_scale_mapping[scale_class.name] = scale_class
def get_scale_docs():
"""
Helper function for generating docstrings related to scales.
"""
docs = []
for name in get_scale_names():
scale_class = _scale_mapping[name]
docs.append(" '%s'" % name)
docs.append("")
class_docs = dedent(scale_class.__init__.__doc__)
class_docs = "".join([" %s\n" %
x for x in class_docs.split("\n")])
docs.append(class_docs)
docs.append("")
return "\n".join(docs)
docstring.interpd.update(
scale=' | '.join([repr(x) for x in get_scale_names()]),
scale_docs=get_scale_docs().rstrip(),
)
|