/usr/lib/python3/dist-packages/netCDF4/utils.py is in python3-netcdf4 1.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 | from __future__ import print_function
import sys
import numpy as np
from numpy import ma
import warnings
import getopt
import os
python3 = sys.version_info[0] > 2
if python3:
# no unicode type in python 3, use bytes instead when testing
# for a string-like object
unicode = str
else:
range = xrange
try:
bytes
except NameError:
# no bytes type in python < 2.6
bytes = str
def _sortbylist(A,B):
# sort one list (A) using the values from another list (B)
return [A[i] for i in sorted(range(len(A)), key=B.__getitem__)]
def _find_dim(grp, dimname):
# find Dimension instance given group and name.
# look in current group, and parents.
group = grp
dim = None
while 1:
try:
dim = group.dimensions[dimname]
break
except:
try:
group = group.parent
except:
raise ValueError("cannot find dimension %s in this group or parent groups" % dimname)
return dim
def _walk_grps(topgrp):
"""Iterate through all (sub-) groups of topgrp, similar to os.walktree.
"""
grps = topgrp.groups.values()
yield grps
for grp in topgrp.groups.values():
for children in _walk_grps(grp):
yield children
def _quantize(data,least_significant_digit):
"""
quantize data to improve compression. data is quantized using
around(scale*data)/scale, where scale is 2**bits, and bits is determined
from the least_significant_digit. For example, if
least_significant_digit=1, bits will be 4.
"""
precision = pow(10.,-least_significant_digit)
exp = np.log10(precision)
if exp < 0:
exp = int(np.floor(exp))
else:
exp = int(np.ceil(exp))
bits = np.ceil(np.log2(pow(10.,-exp)))
scale = pow(2.,bits)
datout = np.around(scale*data)/scale
if ma.isMA(datout):
datout.set_fill_value(data.fill_value)
return datout
else:
return datout
def _StartCountStride(elem, shape, dimensions=None, grp=None, datashape=None,\
put=False):
"""Return start, count, stride and indices needed to store/extract data
into/from a netCDF variable.
This function is used to convert a slicing expression into a form that is
compatible with the nc_get_vars function. Specifically, it needs
to interpret integers, slices, Ellipses, and 1-d sequences of integers
and booleans.
Numpy uses "broadcasting indexing" to handle array-valued indices.
"Broadcasting indexing" (a.k.a "fancy indexing") treats all multi-valued
indices together to allow arbitrary points to be extracted. The index
arrays can be multidimensional, and more than one can be specified in a
slice, as long as they can be "broadcast" against each other.
This style of indexing can be very powerful, but it is very hard
to understand, explain, and implement (and can lead to hard to find bugs).
Most other python packages and array processing
languages (such as netcdf4-python, xray, biggus, matlab and fortran)
use "orthogonal indexing" which only allows for 1-d index arrays and
treats these arrays of indices independently along each dimension.
The implementation of "orthogonal indexing" used here requires that
index arrays be 1-d boolean or integer. If integer arrays are used,
the index values must be sorted and contain no duplicates.
In summary, slicing netcdf4-python variable objects with 1-d integer or
boolean arrays is allowed, but may give a different result than slicing a
numpy array.
Numpy also supports slicing an array with a boolean array of the same
shape. For example x[x>0] returns a 1-d array with all the positive values of x.
This is also not supported in netcdf4-python, if x.ndim > 1.
Orthogonal indexing can be used in to select netcdf variable slices
using the dimension variables. For example, you can use v[lat>60,lon<180]
to fetch the elements of v obeying conditions on latitude and longitude.
Allow for this sort of simple variable subsetting is the reason we decided to
deviate from numpy's slicing rules.
This function is used both by the __setitem__ and __getitem__ method of
the Variable class.
Parameters
----------
elem : tuple of integer, slice, ellipsis or 1-d boolean or integer
sequences used to slice the netCDF Variable (Variable[elem]).
shape : tuple containing the current shape of the netCDF variable.
dimensions : sequence
The name of the dimensions. This is only useful to find out
whether or not some dimensions are unlimited. Only needed within
__setitem__.
grp : netCDF Group
The netCDF group to which the variable being set belongs to.
Only needed within __setitem__.
datashape : sequence
The shape of the data that is being stored. Only needed by __setitime__
put : True|False (default False). If called from __setitem__, put is True.
Returns
-------
start : ndarray (..., n)
A starting indices array of dimension n+1. The first n
dimensions identify different independent data chunks. The last dimension
can be read as the starting indices.
count : ndarray (..., n)
An array of dimension (n+1) storing the number of elements to get.
stride : ndarray (..., n)
An array of dimension (n+1) storing the steps between each datum.
indices : ndarray (..., n)
An array storing the indices describing the location of the
data chunk in the target/source array (__getitem__/__setitem__).
Notes:
netCDF data is accessed via the function:
nc_get_vars(grpid, varid, start, count, stride, data)
Assume that the variable has dimension n, then
start is a n-tuple that contains the indices at the beginning of data chunk.
count is a n-tuple that contains the number of elements to be accessed.
stride is a n-tuple that contains the step length between each element.
"""
# Adapted from pycdf (http://pysclint.sourceforge.net/pycdf)
# by Andre Gosselin..
# Modified by David Huard to handle efficiently fancy indexing with
# sequences of integers or booleans.
nDims = len(shape)
if nDims == 0:
nDims = 1
shape = (1,)
# When a single array or (non-tuple) sequence of integers is given
# as a slice, assume it applies to the first dimension,
# and use ellipsis for remaining dimensions.
if np.iterable(elem):
if type(elem) == np.ndarray or (type(elem) != tuple and \
np.array([_is_int(e) for e in elem]).all()):
elem = [elem]
for n in range(len(elem)+1,nDims+1):
elem.append(slice(None,None,None))
else: # Convert single index to sequence
elem = [elem]
# replace boolean arrays with sequences of integers.
newElem = []
IndexErrorMsg=\
"only integers, slices (`:`), ellipsis (`...`), and 1-d integer or boolean arrays are valid indices"
for i, e in enumerate(elem):
# string-like object try to cast to int
# needs to be done first, since strings are iterable and
# hard to distinguish from something castable to an iterable numpy array.
if type(e) in [str,bytes,unicode]:
try:
e = int(e)
except:
raise IndexError(IndexErrorMsg)
ea = np.asarray(e)
# Raise error if multidimensional indexing is used.
if ea.ndim > 1:
raise IndexError("Index cannot be multidimensional")
# set unlim to True if dimension is unlimited and put==True
# (called from __setitem__)
if put and (dimensions is not None and grp is not None) and len(dimensions):
try:
dimname = dimensions[i]
# is this dimension unlimited?
# look in current group, and parents for dim.
dim = _find_dim(grp, dimname)
unlim = dim.isunlimited()
except IndexError: # more slices than dimensions (issue 371)
unlim = False
else:
unlim = False
# convert boolean index to integer array.
if np.iterable(ea) and ea.dtype.kind =='b':
# check that boolen array not too long
if not unlim and shape[i] != len(ea):
msg="""
Boolean array must have the same shape as the data along this dimension."""
raise IndexError(msg)
ea = np.flatnonzero(ea)
# an iterable (non-scalar) integer array.
if np.iterable(ea) and ea.dtype.kind == 'i':
# convert negative indices in 1d array to positive ones.
ea = np.where(ea < 0, ea + shape[i], ea)
if np.any(ea < 0):
raise IndexErro("integer index out of range")
# if unlim, let integer index be longer than current dimension
# length.
if ea.shape != (0,):
elen = shape[i]
if unlim:
elen = max(ea.max()+1,elen)
if ea.max()+1 > elen:
msg="integer index exceeds dimension size"
raise IndexError(msg)
newElem.append(ea)
# integer scalar
elif ea.dtype.kind == 'i':
newElem.append(e)
# slice or ellipsis object
elif type(e) == slice or type(e) == type(Ellipsis):
newElem.append(e)
else: # castable to a scalar int, otherwise invalid
try:
e = int(e)
newElem.append(e)
except:
raise IndexError(IndexErrorMsg)
elem = newElem
# replace Ellipsis and integer arrays with slice objects, if possible.
hasEllipsis = False
newElem = []
for e in elem:
ea = np.asarray(e)
# Replace ellipsis with slices.
if type(e) == type(Ellipsis):
if hasEllipsis:
raise IndexError("At most one ellipsis allowed in a slicing expression")
# The ellipsis stands for the missing dimensions.
newElem.extend((slice(None, None, None),) * (nDims - len(elem) + 1))
hasEllipsis = True
# Replace sequence of indices with slice object if possible.
elif np.iterable(e) and len(e) > 1:
start = e[0]
stop = e[-1]+1
step = e[1]-e[0]
try:
ee = range(start,stop,step)
except ValueError: # start, stop or step is not valid for a range
ee = False
if ee and len(e) == len(ee) and (e == np.arange(start,stop,step)).all():
newElem.append(slice(start,stop,step))
else:
newElem.append(e)
elif np.iterable(e) and len(e) == 1:
newElem.append(slice(e[0], e[0] + 1, 1))
else:
newElem.append(e)
elem = newElem
# If slice doesn't cover all dims, assume ellipsis for rest of dims.
if len(elem) < nDims:
for n in range(len(elem)+1,nDims+1):
elem.append(slice(None,None,None))
# make sure there are not too many dimensions in slice.
if len(elem) > nDims:
raise ValueError("slicing expression exceeds the number of dimensions of the variable")
# Compute the dimensions of the start, count, stride and indices arrays.
# The number of elements in the first n dimensions corresponds to the
# number of times the _get method will be called.
sdim = []
for i, e in enumerate(elem):
# at this stage e is a slice, a scalar integer, or a 1d integer array.
# integer array: _get call for each True value
if np.iterable(e):
sdim.append(np.alen(e))
# Scalar int or slice, just a single _get call
else:
sdim.append(1)
# Create the start, count, stride and indices arrays.
sdim.append(max(nDims, 1))
start = np.empty(sdim, dtype=int)
count = np.empty(sdim, dtype=int)
stride = np.empty(sdim, dtype=int)
indices = np.empty(sdim, dtype=object)
for i, e in enumerate(elem):
ea = np.asarray(e)
# set unlim to True if dimension is unlimited and put==True
# (called from __setitem__). Note: grp and dimensions must be set.
if put and (dimensions is not None and grp is not None) and len(dimensions):
dimname = dimensions[i]
# is this dimension unlimited?
# look in current group, and parents for dim.
dim = _find_dim(grp, dimname)
unlim = dim.isunlimited()
else:
unlim = False
# SLICE #
if type(e) == slice:
# determine length parameter for slice.indices.
# shape[i] can be zero for unlim dim that hasn't been written to
# yet.
# length of slice may be longer than current shape
# if dimension is unlimited (and we are writing, not reading).
if unlim and e.stop is not None and e.stop > shape[i]:
length = e.stop
elif unlim and e.stop is None and datashape != ():
if e.start is None:
length = datashape[i]
else:
length = e.start+datashape[i]
else:
if unlim and datashape == () and len(dim) == 0:
# writing scalar along unlimited dimension using slicing
# syntax (var[:] = 1, when var.shape = ())
length = 1
else:
length = shape[i]
beg, end, inc = e.indices(length)
n = len(range(beg,end,inc))
start[...,i] = beg
count[...,i] = n
stride[...,i] = inc
indices[...,i] = slice(None)
# ITERABLE #
elif np.iterable(e) and np.array(e).dtype.kind in 'i': # Sequence of integers
start[...,i] = np.apply_along_axis(lambda x: e*x, i, np.ones(sdim[:-1]))
indices[...,i] = np.apply_along_axis(lambda x: np.arange(sdim[i])*x, i, np.ones(sdim[:-1], int))
count[...,i] = 1
stride[...,i] = 1
# all that's left is SCALAR INTEGER #
else:
if e >= 0:
start[...,i] = e
elif e < 0 and (-e <= shape[i]) :
start[...,i] = e+shape[i]
else:
raise IndexError("Index out of range")
count[...,i] = 1
stride[...,i] = 1
indices[...,i] = -1 # Use -1 instead of 0 to indicate that
# this dimension shall be squeezed.
return start, count, stride, indices#, out_shape
def _out_array_shape(count):
"""Return the output array shape given the count array created by getStartCountStride"""
s = list(count.shape[:-1])
out = []
for i, n in enumerate(s):
if n == 1:
c = count[..., i].ravel()[0] # All elements should be identical.
out.append(c)
else:
out.append(n)
return out
def _is_container(a):
# is object container-like? (can test for
# membership with "is in", but not a string)
try: 1 in a
except: return False
if type(a) == type(basestring): return False
return True
def _is_int(a):
try:
return int(a) == a
except:
return False
def _tostr(s):
try:
ss = str(s)
except:
ss = s
return ss
def _getgrp(g,p):
import posixpath
grps = p.split("/")
for gname in grps:
if gname == "": continue
g = g.groups[gname]
return g
def ncinfo():
from netCDF4 import Dataset
usage = """
Print summary information about a netCDF file.
usage: %s [-h] [-g grp or --group=grp] [-v var or --variable=var] [-d dim or --dimension=dim] filename
-h -- Print usage message.
-g <group name> or --group=<group name> -- Print info for this group
(default is root group). Nested groups specified
using posix paths ("group1/group2/group3").
-v <variable name> or --variable=<variable name> -- Print info for this variable.
-d <dimension name> or --dimension=<dimension name> -- Print info for this dimension.
netcdf filename must be last argument.
\n""" % os.path.basename(sys.argv[0])
try:
opts, pargs = getopt.getopt(sys.argv[1:],'hv:g:d:',
['group=',
'variable=',
'dimension='])
except:
(type, value, traceback) = sys.exc_info()
sys.stdout.write("Error parsing the options. The error was: %s\n" % value)
sys.stderr.write(usage)
sys.exit(0)
# Get the options
group = None; var = None; dim=None
for option in opts:
if option[0] == '-h':
sys.stderr.write(usage)
sys.exit(0)
elif option[0] == '--group' or option[0] == '-g':
group = option[1]
elif option[0] == '--variable' or option[0] == '-v':
var = option[1]
elif option[0] == '--dimension' or option[0] == '-d':
dim = option[1]
else:
sys.stdout.write("%s: Unrecognized option\n" % option[0])
sys.stderr.write(usage)
sys.exit(0)
# filename passed as last argumenbt
filename = pargs[-1]
f = Dataset(filename)
if group is None:
if var is None and dim is None:
print(f)
else:
if var is not None:
print(f.variables[var])
if dim is not None:
print(f.dimensions[dim])
else:
if var is None and dim is None:
print(getgrp(f,group))
else:
g = getgrp(f,group)
if var is not None:
print(g.variables[var])
if dim is not None:
print(g.dimensions[var])
f.close()
def _nc4tonc3(filename4,filename3,clobber=False,nchunk=10,quiet=False,format='NETCDF3_64BIT'):
"""convert a netcdf 4 file (filename4) in NETCDF4_CLASSIC format
to a netcdf 3 file (filename3) in NETCDF3_64BIT format."""
ncfile4 = Dataset(filename4,'r')
if ncfile4.file_format != 'NETCDF4_CLASSIC':
raise IOError('input file must be in NETCDF4_CLASSIC format')
ncfile3 = Dataset(filename3,'w',clobber=clobber,format=format)
# create dimensions. Check for unlimited dim.
unlimdimname = False
unlimdim = None
# create global attributes.
if not quiet: sys.stdout.write('copying global attributes ..\n')
#for attname in ncfile4.ncattrs():
# setattr(ncfile3,attname,getattr(ncfile4,attname))
ncfile3.setncatts(ncfile4.__dict__)
if not quiet: sys.stdout.write('copying dimensions ..\n')
for dimname,dim in ncfile4.dimensions.items():
if dim.isunlimited():
unlimdimname = dimname
unlimdim = dim
ncfile3.createDimension(dimname,None)
else:
ncfile3.createDimension(dimname,len(dim))
# create variables.
for varname,ncvar in ncfile4.variables.items():
if not quiet:
sys.stdout.write('copying variable %s\n' % varname)
# is there an unlimited dimension?
if unlimdimname and unlimdimname in ncvar.dimensions:
hasunlimdim = True
else:
hasunlimdim = False
if hasattr(ncvar, '_FillValue'):
FillValue = ncvar._FillValue
else:
FillValue = None
var = ncfile3.createVariable(varname,ncvar.dtype,ncvar.dimensions,fill_value=FillValue)
# fill variable attributes.
attdict = ncvar.__dict__
if '_FillValue' in attdict:
del attdict['_FillValue']
var.setncatts(attdict)
#for attname in ncvar.ncattrs():
# if attname == '_FillValue': continue
# setattr(var,attname,getattr(ncvar,attname))
# fill variables with data.
if hasunlimdim: # has an unlim dim, loop over unlim dim index.
# range to copy
if nchunk:
start = 0; stop = len(unlimdim); step = nchunk
if step < 1:
step = 1
for n in range(start, stop, step):
nmax = n+nchunk
if nmax > len(unlimdim):
nmax=len(unlimdim)
var[n:nmax] = ncvar[n:nmax]
else:
var[0:len(unlimdim)] = ncvar[:]
else: # no unlim dim or 1-d variable, just copy all data at once.
var[:] = ncvar[:]
ncfile3.sync() # flush data to disk
# close files.
ncfile3.close()
ncfile4.close()
def nc4tonc3():
usage = """
Convert a netCDF 4 file (in NETCDF4_CLASSIC format) to netCDF 3 format.
usage: %s [-h] [-o] [--chunk] netcdf4filename netcdf3filename
-h -- Print usage message.
-o -- Overwite destination file (default is to raise an error if output file already exists).
--quiet=(0|1) -- if 1, don't print diagnostic information.
--format -- netcdf3 format to use (NETCDF3_64BIT by default, can be set to NETCDF3_CLASSIC)
--chunk=(integer) -- number of records along unlimited dimension to
write at once. Default 10. Ignored if there is no unlimited
dimension. chunk=0 means write all the data at once.
\n""" % os.path.basename(sys.argv[0])
try:
opts, pargs = getopt.getopt(sys.argv[1:], 'ho',
['format=','chunk=','quiet='])
except:
(type, value, traceback) = sys.exc_info()
sys.stdout.write("Error parsing the options. The error was: %s\n" % value)
sys.stderr.write(usage)
sys.exit(0)
# default options
quiet = 0
chunk = 1000
format = 'NETCDF3_64BIT'
overwritefile = 0
# Get the options
for option in opts:
if option[0] == '-h':
sys.stderr.write(usage)
sys.exit(0)
elif option[0] == '-o':
overwritefile = 1
elif option[0] == '--quiet':
quiet = int(option[1])
elif option[0] == '--format':
format = option[1]
elif option[0] == '--chunk':
chunk = int(option[1])
else:
sys.stdout.write("%s : Unrecognized option\n" % options[0])
sys.stderr.write(usage)
sys.exit(0)
# if we pass a number of files different from 2, abort
if len(pargs) < 2 or len(pargs) > 2:
sys.stdout.write("You need to pass both source and destination!\n.")
sys.stderr.write(usage)
sys.exit(0)
# Catch the files passed as the last arguments
filename4 = pargs[0]
filename3 = pargs[1]
# copy the data from filename4 to filename3.
_nc4tonc3(filename4,filename3,clobber=overwritefile,quiet=quiet,format=format)
def _nc3tonc4(filename3,filename4,unpackshort=True,
zlib=True,complevel=6,shuffle=True,fletcher32=False,
clobber=False,lsd_dict=None,nchunk=10,quiet=False,classic=0,
vars=None,istart=0,istop=-1):
"""convert a netcdf 3 file (filename3) to a netcdf 4 file
The default format is 'NETCDF4', but can be set
to NETCDF4_CLASSIC if classic=1.
If unpackshort=True, variables stored as short
integers with a scale and offset are unpacked to floats.
in the netcdf 4 file. If the lsd_dict is not None, variable names
corresponding to the keys of the dict will be truncated to the decimal place
specified by the values of the dict. This improves compression by
making it 'lossy'..
If vars is not None, only variable names in the list
will be copied (plus all the dimension variables).
The zlib, complevel and shuffle keywords control
how the compression is done."""
from netCDF4 import Dataset
ncfile3 = Dataset(filename3,'r')
if classic:
ncfile4 = Dataset(filename4,'w',clobber=clobber,format='NETCDF4_CLASSIC')
else:
ncfile4 = Dataset(filename4,'w',clobber=clobber,format='NETCDF4')
mval = 1.e30 # missing value if unpackshort=True
# create dimensions. Check for unlimited dim.
unlimdimname = False
unlimdim = None
# create global attributes.
if not quiet: sys.stdout.write('copying global attributes ..\n')
#for attname in ncfile3.ncattrs():
# setattr(ncfile4,attname,getattr(ncfile3,attname))
ncfile4.setncatts(ncfile3.__dict__)
if not quiet: sys.stdout.write('copying dimensions ..\n')
for dimname,dim in ncfile3.dimensions.items():
if dim.isunlimited():
unlimdimname = dimname
unlimdim = dim
ncfile4.createDimension(dimname,None)
if istop == -1: istop=len(unlimdim)
else:
ncfile4.createDimension(dimname,len(dim))
# create variables.
if vars is None:
varnames = ncfile3.variables.keys()
else:
# variables to copy specified
varnames = vars
# add dimension variables
for dimname in ncfile3.dimensions.keys():
if dimname in ncfile3.variables.keys() and\
dimname not in varnames:
varnames.append(dimname)
for varname in varnames:
ncvar = ncfile3.variables[varname]
if not quiet: sys.stdout.write('copying variable %s\n' % varname)
# quantize data?
if lsd_dict is not None and lsd_dict.has_key(varname):
lsd = lsd_dict[varname]
if not quiet: sys.stdout.write('truncating to least_significant_digit = %d\n'%lsd)
else:
lsd = None # no quantization.
# unpack short integers to floats?
if unpackshort and hasattr(ncvar,'scale_factor') and hasattr(ncvar,'add_offset'):
dounpackshort = True
datatype = 'f4'
else:
dounpackshort = False
datatype = ncvar.dtype
# is there an unlimited dimension?
if unlimdimname and unlimdimname in ncvar.dimensions:
hasunlimdim = True
else:
hasunlimdim = False
if dounpackshort:
if not quiet: sys.stdout.write('unpacking short integers to floats ...\n')
sys.stdout.write('')
if hasattr(ncvar, '_FillValue'):
FillValue = ncvar._FillValue
else:
FillValue = None
var = ncfile4.createVariable(varname,datatype,ncvar.dimensions, fill_value=FillValue, least_significant_digit=lsd,zlib=zlib,complevel=complevel,shuffle=shuffle,fletcher32=fletcher32)
# fill variable attributes.
attdict = ncvar.__dict__
if '_FillValue' in attdict: del attdict['_FillValue']
if dounpackshort and 'add_offset' in attdict:
del attdict['add_offset']
if dounpackshort and 'scale_factor' in attdict:
del attdict['scale_factor']
if dounpackshort and 'missing_value' in attdict:
attdict['missing_value']=mval
var.setncatts(attdict)
#for attname in ncvar.ncattrs():
# if attname == '_FillValue': continue
# if dounpackshort and attname in ['add_offset','scale_factor']: continue
# if dounpackshort and attname == 'missing_value':
# setattr(var,attname,mval)
# else:
# setattr(var,attname,getattr(ncvar,attname))
# fill variables with data.
if hasunlimdim: # has an unlim dim, loop over unlim dim index.
# range to copy
if nchunk:
start = istart; stop = istop; step = nchunk
if step < 1: step = 1
for n in range(start, stop, step):
nmax = n+nchunk
if nmax > istop: nmax=istop
idata = ncvar[n:nmax]
if dounpackshort:
tmpdata = (ncvar.scale_factor*idata.astype('f')+ncvar.add_offset).astype('f')
if hasattr(ncvar,'missing_value'):
tmpdata = np.where(idata == ncvar.missing_value, mval, tmpdata)
else:
tmpdata = idata
var[n-istart:nmax-istart] = tmpdata
else:
idata = ncvar[:]
if dounpackshort:
tmpdata = (ncvar.scale_factor*idata.astype('f')+ncvar.add_offset).astype('f')
if hasattr(ncvar,'missing_value'):
tmpdata = np.where(idata == ncvar.missing_value, mval, tmpdata)
else:
tmpdata = idata
var[0:len(unlimdim)] = tmpdata
else: # no unlim dim or 1-d variable, just copy all data at once.
idata = ncvar[:]
if dounpackshort:
tmpdata = (ncvar.scale_factor*idata.astype('f')+ncvar.add_offset).astype('f')
if hasattr(ncvar,'missing_value'):
tmpdata = np.where(idata == ncvar.missing_value, mval, tmpdata)
else:
tmpdata = idata
var[:] = tmpdata
ncfile4.sync() # flush data to disk
# close files.
ncfile3.close()
ncfile4.close()
def nc3tonc4():
usage = """
Convert a netCDF 3 file to netCDF 4 format, optionally
unpacking variables packed as short integers (with scale_factor and add_offset)
to floats, and adding zlib compression (with the HDF5 shuffle filter and fletcher32 checksum).
Data may also be quantized (truncated) to a specified precision to improve compression.
usage: %s [-h] [-o] [--vars=var1,var2,..] [--zlib=(0|1)] [--complevel=(1-9)] [--shuffle=(0|1)] [--fletcher32=(0|1)] [--unpackshort=(0|1)] [--quantize=var1=n1,var2=n2,..] netcdf3filename netcdf4filename
-h -- Print usage message.
-o -- Overwite destination file (default is to raise an error if output file already exists).
--vars -- comma separated list of variable names to copy (default is to copy
all variables)
--classic=(0|1) -- use NETCDF4_CLASSIC format instead of NETCDF4 (default 1)
--zlib=(0|1) -- Activate (or disable) zlib compression (default is activate).
--complevel=(1-9) -- Set zlib compression level (6 is default).
--shuffle=(0|1) -- Activate (or disable) the shuffle filter (active by default).
--fletcher32=(0|1) -- Activate (or disable) the fletcher32 checksum (not
active by default).
--unpackshort=(0|1) -- Unpack short integer variables to float variables
using scale_factor and add_offset netCDF variable attributes (active by default).
--quantize=(comma separated list of "variable name=integer" pairs) --
Truncate the data in the specified variables to a given decimal precision.
For example, 'speed=2, height=-2, temp=0' will cause the variable
'speed' to be truncated to a precision of 0.01, 'height' to a precision of 100
and 'temp' to 1. This can significantly improve compression. The default
is not to quantize any of the variables.
--quiet=(0|1) -- if 1, don't print diagnostic information.
--chunk=(integer) -- number of records along unlimited dimension to
write at once. Default 10. Ignored if there is no unlimited
dimension. chunk=0 means write all the data at once.
--istart=(integer) -- number of record to start at along unlimited dimension.
Default 0. Ignored if there is no unlimited dimension.
--istop=(integer) -- number of record to stop at along unlimited dimension.
Default -1. Ignored if there is no unlimited dimension.
\n""" % os.path.basename(sys.argv[0])
try:
opts, pargs = getopt.getopt(sys.argv[1:], 'ho',
['classic=',
'vars=',
'zlib=',
'quiet=',
'complevel=',
'shuffle=',
'fletcher32=',
'unpackshort=',
'quantize=',
'chunk=',
'istart=',
'istop='])
except:
(type, value, traceback) = sys.exc_info()
sys.stdout.write("Error parsing the options. The error was: %s\n" % value)
sys.stderr.write(usage)
sys.exit(0)
# default options
overwritefile = 0
complevel = 6
classic = 1
zlib = 1
shuffle = 1
fletcher32 = 0
unpackshort = 1
vars = None
quantize = None
quiet = 0
chunk = 1000
istart = 0
istop = -1
# Get the options
for option in opts:
if option[0] == '-h':
sys.stderr.write(usage)
sys.exit(0)
elif option[0] == '-o':
overwritefile = 1
elif option[0] == '--classic':
classic = int(option[1])
elif option[0] == '--zlib':
zlib = int(option[1])
elif option[0] == '--quiet':
quiet = int(option[1])
elif option[0] == '--complevel':
complevel = int(option[1])
elif option[0] == '--shuffle':
shuffle = int(option[1])
elif option[0] == '--fletcher32':
fletcher32 = int(option[1])
elif option[0] == '--unpackshort':
unpackshort = int(option[1])
elif option[0] == '--chunk':
chunk = int(option[1])
elif option[0] == '--vars':
vars = option[1]
elif option[0] == '--quantize':
quantize = option[1]
elif option[0] == '--istart':
istart = int(option[1])
elif option[0] == '--istop':
istop = int(option[1])
else:
sys.stdout.write("%s: Unrecognized option\n" % option[0])
sys.stderr.write(usage)
sys.exit(0)
# if we pass a number of files different from 2, abort
if len(pargs) < 2 or len(pargs) > 2:
sys.stdout.write("You need to pass both source and destination!.\n")
sys.stderr.write(usage)
sys.exit(0)
# Catch the files passed as the last arguments
filename3 = pargs[0]
filename4 = pargs[1]
# Parse the quantize option, create a dictionary from key/value pairs.
if quantize is not None:
lsd_dict = {}
for p in quantize.split(','):
kv = p.split('=')
lsd_dict[kv[0]] = int(kv[1])
else:
lsd_dict=None
# Parse the vars option, create a list of variable names.
if vars is not None:
vars = vars.split(',')
# copy the data from filename3 to filename4.
_nc3tonc4(filename3,filename4,unpackshort=unpackshort,
zlib=zlib,complevel=complevel,shuffle=shuffle,
fletcher32=fletcher32,clobber=overwritefile,lsd_dict=lsd_dict,
nchunk=chunk,quiet=quiet,vars=vars,classic=classic,
istart=istart,istop=istop)
|