/usr/lib/python3/dist-packages/netcdftime/netcdftime.py is in python3-netcdf4 1.2.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | """
Performs conversions of netCDF time coordinate data to/from datetime objects.
"""
import numpy as np
import math
import numpy
import re
from datetime import datetime as real_datetime
try:
from itertools import izip as zip
except ImportError: # python 3.x
pass
from ._datetime import datetime
microsec_units = ['microseconds','microsecond', 'microsec', 'microsecs']
millisec_units = ['milliseconds', 'millisecond', 'millisec', 'millisecs']
sec_units = ['second', 'seconds', 'sec', 'secs', 's']
min_units = ['minute', 'minutes', 'min', 'mins']
hr_units = ['hour', 'hours', 'hr', 'hrs', 'h']
day_units = ['day', 'days', 'd']
_units = microsec_units+millisec_units+sec_units+min_units+hr_units+day_units
_calendars = ['standard', 'gregorian', 'proleptic_gregorian',
'noleap', 'julian', 'all_leap', '365_day', '366_day', '360_day']
__version__ = '1.4.1'
# Adapted from http://delete.me.uk/2005/03/iso8601.html
ISO8601_REGEX = re.compile(r"(?P<year>[+-]?[0-9]{1,4})(-(?P<month>[0-9]{1,2})(-(?P<day>[0-9]{1,2})"
r"(((?P<separator1>.)(?P<hour>[0-9]{1,2}):(?P<minute>[0-9]{1,2})(:(?P<second>[0-9]{1,2})(\.(?P<fraction>[0-9]+))?)?)?"
r"((?P<separator2>.?)(?P<timezone>Z|(([-+])([0-9]{1,2}):([0-9]{1,2}))))?)?)?)?"
)
TIMEZONE_REGEX = re.compile(
"(?P<prefix>[+-])(?P<hours>[0-9]{1,2}):(?P<minutes>[0-9]{1,2})")
def JulianDayFromDate(date, calendar='standard'):
"""
creates a Julian Day from a 'datetime-like' object. Returns the fractional
Julian Day (resolution approx 0.1 second).
if calendar='standard' or 'gregorian' (default), Julian day follows Julian
Calendar on and before 1582-10-5, Gregorian calendar after 1582-10-15.
if calendar='proleptic_gregorian', Julian Day follows gregorian calendar.
if calendar='julian', Julian Day follows julian calendar.
Algorithm:
Meeus, Jean (1998) Astronomical Algorithms (2nd Edition). Willmann-Bell,
Virginia. p. 63
"""
# based on redate.py by David Finlayson.
# check if input was scalar and change return accordingly
isscalar = False
try:
date[0]
except:
isscalar = True
date = np.atleast_1d(np.array(date))
year = np.empty(len(date), dtype=np.int32)
month = year.copy()
day = year.copy()
hour = year.copy()
minute = year.copy()
second = year.copy()
microsecond = year.copy()
for i, d in enumerate(date):
year[i] = d.year
month[i] = d.month
day[i] = d.day
hour[i] = d.hour
minute[i] = d.minute
second[i] = d.second
microsecond[i] = d.microsecond
# Convert time to fractions of a day
day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0
# Start Meeus algorithm (variables are in his notation)
month_lt_3 = month < 3
month[month_lt_3] = month[month_lt_3] + 12
year[month_lt_3] = year[month_lt_3] - 1
# MC - assure array
# A = np.int64(year / 100)
A = (year / 100).astype(np.int64)
# MC
# jd = int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + \
# day - 1524.5
jd = 365. * year + np.int32(0.25 * year + 2000.) + np.int32(30.6001 * (month + 1)) + \
day + 1718994.5
# optionally adjust the jd for the switch from
# the Julian to Gregorian Calendar
# here assumed to have occurred the day after 1582 October 4
if calendar in ['standard', 'gregorian']:
# MC - do not have to be contiguous dates
# if np.min(jd) >= 2299170.5:
# # 1582 October 15 (Gregorian Calendar)
# B = 2 - A + np.int32(A / 4)
# elif np.max(jd) < 2299160.5:
# # 1582 October 5 (Julian Calendar)
# B = np.zeros(len(jd))
# else:
# print(date, calendar, jd)
# raise ValueError(
# 'impossible date (falls in gap between end of Julian calendar and beginning of Gregorian calendar')
if np.any((jd >= 2299160.5) & (jd < 2299170.5)): # missing days in Gregorian calendar
raise ValueError(
'impossible date (falls in gap between end of Julian calendar and beginning of Gregorian calendar')
B = np.zeros(len(jd)) # 1582 October 5 (Julian Calendar)
ii = np.where(jd >= 2299170.5)[0] # 1582 October 15 (Gregorian Calendar)
if ii.size>0:
B[ii] = 2 - A[ii] + np.int32(A[ii] / 4)
elif calendar == 'proleptic_gregorian':
B = 2 - A + np.int32(A / 4)
elif calendar == 'julian':
B = np.zeros(len(jd))
else:
raise ValueError(
'unknown calendar, must be one of julian,standard,gregorian,proleptic_gregorian, got %s' % calendar)
# adjust for Julian calendar if necessary
jd = jd + B
# Add a small offset (proportional to Julian date) for correct re-conversion.
# This is about 45 microseconds in 2000 for Julian date starting -4712.
# (pull request #433).
eps = np.finfo(float).eps
eps = np.maximum(eps*jd, eps)
jd += eps
if isscalar:
return jd[0]
else:
return jd
def _NoLeapDayFromDate(date):
"""
creates a Julian Day for a calendar with no leap years from a datetime
instance. Returns the fractional Julian Day (resolution approx 0.1 second).
"""
year = date.year
month = date.month
day = date.day
hour = date.hour
minute = date.minute
second = date.second
microsecond = date.microsecond
# Convert time to fractions of a day
day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0
# Start Meeus algorithm (variables are in his notation)
if (month < 3):
month = month + 12
year = year - 1
jd = int(365. * (year + 4716)) + int(30.6001 * (month + 1)) + \
day - 1524.5
return jd
def _AllLeapFromDate(date):
"""
creates a Julian Day for a calendar where all years have 366 days from
a 'datetime-like' object.
Returns the fractional Julian Day (resolution approx 0.1 second).
"""
year = date.year
month = date.month
day = date.day
hour = date.hour
minute = date.minute
second = date.second
microsecond = date.microsecond
# Convert time to fractions of a day
day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0
# Start Meeus algorithm (variables are in his notation)
if (month < 3):
month = month + 12
year = year - 1
jd = int(366. * (year + 4716)) + int(30.6001 * (month + 1)) + \
day - 1524.5
return jd
def _360DayFromDate(date):
"""
creates a Julian Day for a calendar where all months have 30 daysfrom
a 'datetime-like' object.
Returns the fractional Julian Day (resolution approx 0.1 second).
"""
year = date.year
month = date.month
day = date.day
hour = date.hour
minute = date.minute
second = date.second
microsecond = date.microsecond
# Convert time to fractions of a day
day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0
jd = int(360. * (year + 4716)) + int(30. * (month - 1)) + day
return jd
def DateFromJulianDay(JD, calendar='standard'):
"""
returns a 'datetime-like' object given Julian Day. Julian Day is a
fractional day with a resolution of approximately 0.1 seconds.
if calendar='standard' or 'gregorian' (default), Julian day follows Julian
Calendar on and before 1582-10-5, Gregorian calendar after 1582-10-15.
if calendar='proleptic_gregorian', Julian Day follows gregorian calendar.
if calendar='julian', Julian Day follows julian calendar.
The datetime object is a 'real' datetime object if the date falls in
the Gregorian calendar (i.e. calendar='proleptic_gregorian', or
calendar = 'standard'/'gregorian' and the date is after 1582-10-15).
Otherwise, it's a 'phony' datetime object which is actually an instance
of netcdftime.datetime.
Algorithm:
Meeus, Jean (1998) Astronomical Algorithms (2nd Edition). Willmann-Bell,
Virginia. p. 63
"""
# based on redate.py by David Finlayson.
julian = np.array(JD, dtype=float)
if np.min(julian) < 0:
raise ValueError('Julian Day must be positive')
dayofwk = np.atleast_1d(np.int32(np.fmod(np.int32(julian + 1.5), 7)))
# get the day (Z) and the fraction of the day (F)
# add 0.000005 which is 452 ms in case of jd being after
# second 23:59:59 of a day we want to round to the next day see issue #75
Z = np.atleast_1d(np.int32(np.round(julian)))
F = np.atleast_1d(julian + 0.5 - Z).astype(np.float64)
if calendar in ['standard', 'gregorian']:
# MC
# alpha = int((Z - 1867216.25)/36524.25)
# A = Z + 1 + alpha - int(alpha/4)
alpha = np.int32(((Z - 1867216.) - 0.25) / 36524.25)
A = Z + 1 + alpha - np.int32(0.25 * alpha)
# check if dates before oct 5th 1582 are in the array
ind_before = np.where(julian < 2299160.5)[0]
if len(ind_before) > 0:
A[ind_before] = Z[ind_before]
elif calendar == 'proleptic_gregorian':
# MC
# alpha = int((Z - 1867216.25)/36524.25)
# A = Z + 1 + alpha - int(alpha/4)
alpha = np.int32(((Z - 1867216.) - 0.25) / 36524.25)
A = Z + 1 + alpha - np.int32(0.25 * alpha)
elif calendar == 'julian':
A = Z
else:
raise ValueError(
'unknown calendar, must be one of julian,standard,gregorian,proleptic_gregorian, got %s' % calendar)
B = A + 1524
# MC
# C = int((B - 122.1)/365.25)
# D = int(365.25 * C)
C = np.atleast_1d(np.int32(6680. + ((B - 2439870.) - 122.1) / 365.25))
D = np.atleast_1d(np.int32(365 * C + np.int32(0.25 * C)))
E = np.atleast_1d(np.int32((B - D) / 30.6001))
# Convert to date
day = np.clip(B - D - np.int64(30.6001 * E) + F, 1, None)
nday = B - D - 123
dayofyr = nday - 305
ind_nday_before = np.where(nday <= 305)[0]
if len(ind_nday_before) > 0:
dayofyr[ind_nday_before] = nday[ind_nday_before] + 60
# MC
# if E < 14:
# month = E - 1
# else:
# month = E - 13
# if month > 2:
# year = C - 4716
# else:
# year = C - 4715
month = E - 1
month[month > 12] = month[month > 12] - 12
year = C - 4715
year[month > 2] = year[month > 2] - 1
year[year <= 0] = year[year <= 0] - 1
# a leap year?
leap = np.zeros(len(year),dtype=dayofyr.dtype)
leap[year % 4 == 0] = 1
if calendar == 'proleptic_gregorian':
leap[(year % 100 == 0) & (year % 400 != 0)] = 0
elif calendar in ['standard', 'gregorian']:
leap[(year % 100 == 0) & (year % 400 != 0) & (julian < 2299160.5)] = 0
inc_idx = np.where((leap == 1) & (month > 2))[0]
dayofyr[inc_idx] = dayofyr[inc_idx] + leap[inc_idx]
# Subtract the offset from JulianDayFromDate from the microseconds (pull
# request #433).
eps = np.finfo(float).eps
eps = np.maximum(eps*julian, eps)
hour = np.clip((F * 24.).astype(np.int64), 0, 23)
F -= hour / 24.
minute = np.clip((F * 1440.).astype(np.int64), 0, 59)
# this is an overestimation due to added offset in JulianDayFromDate
second = np.clip((F - minute / 1440.) * 86400., 0, None)
microsecond = (second % 1)*1.e6
# remove the offset from the microsecond calculation.
microsecond = np.clip(microsecond - eps*86400.*1e6, 0, 999999)
# convert year, month, day, hour, minute, second to int32
year = year.astype(np.int32)
month = month.astype(np.int32)
day = day.astype(np.int32)
hour = hour.astype(np.int32)
minute = minute.astype(np.int32)
second = second.astype(np.int32)
microsecond = microsecond.astype(np.int32)
# check if input was scalar and change return accordingly
isscalar = False
try:
JD[0]
except:
isscalar = True
# return a 'real' datetime instance if calendar is gregorian.
if calendar in 'proleptic_gregorian' or \
(calendar in ['standard', 'gregorian'] and len(ind_before) == 0):
if not isscalar:
return np.array([real_datetime(*args)
for args in
zip(year, month, day, hour, minute, second,
microsecond)])
else:
return real_datetime(year[0], month[0], day[0], hour[0],
minute[0], second[0], microsecond[0])
else:
# or else, return a 'datetime-like' instance.
if not isscalar:
return np.array([datetime(*args)
for args in
zip(year, month, day, hour, minute,
second, microsecond, dayofwk, dayofyr)])
else:
return datetime(year[0], month[0], day[0], hour[0],
minute[0], second[0], microsecond[0], dayofwk[0],
dayofyr[0])
def _DateFromNoLeapDay(JD):
"""
returns a 'datetime-like' object given Julian Day for a calendar with no leap
days. Julian Day is a fractional day with a resolution of approximately 0.1 seconds.
"""
# based on redate.py by David Finlayson.
if JD < 0:
raise ValueError('Julian Day must be positive')
dayofwk = int(math.fmod(int(JD + 1.5), 7))
(F, Z) = math.modf(JD + 0.5)
Z = int(Z)
A = Z
B = A + 1524
C = int((B - 122.1) / 365.)
D = int(365. * C)
E = int((B - D) / 30.6001)
# Convert to date
day = B - D - int(30.6001 * E) + F
nday = B - D - 123
if nday <= 305:
dayofyr = nday + 60
else:
dayofyr = nday - 305
if E < 14:
month = E - 1
else:
month = E - 13
if month > 2:
year = C - 4716
else:
year = C - 4715
# Convert fractions of a day to time
(dfrac, days) = math.modf(day / 1.0)
(hfrac, hours) = math.modf(dfrac * 24.0)
(mfrac, minutes) = math.modf(hfrac * 60.0)
(sfrac, seconds) = math.modf(mfrac * 60.0)
microseconds = sfrac*1.e6
return datetime(year, month, int(days), int(hours), int(minutes),
int(seconds), int(microseconds),dayofwk, dayofyr)
def _DateFromAllLeap(JD):
"""
returns a 'datetime-like' object given Julian Day for a calendar where all
years have 366 days.
Julian Day is a fractional day with a resolution of approximately 0.1 seconds.
"""
# based on redate.py by David Finlayson.
if JD < 0:
raise ValueError('Julian Day must be positive')
dayofwk = int(math.fmod(int(JD + 1.5), 7))
(F, Z) = math.modf(JD + 0.5)
Z = int(Z)
A = Z
B = A + 1524
C = int((B - 122.1) / 366.)
D = int(366. * C)
E = int((B - D) / 30.6001)
# Convert to date
day = B - D - int(30.6001 * E) + F
nday = B - D - 123
if nday <= 305:
dayofyr = nday + 60
else:
dayofyr = nday - 305
if E < 14:
month = E - 1
else:
month = E - 13
if month > 2:
dayofyr = dayofyr + 1
if month > 2:
year = C - 4716
else:
year = C - 4715
# Convert fractions of a day to time
(dfrac, days) = math.modf(day / 1.0)
(hfrac, hours) = math.modf(dfrac * 24.0)
(mfrac, minutes) = math.modf(hfrac * 60.0)
(sfrac, seconds) = math.modf(mfrac * 60.0)
microseconds = sfrac*1.e6
return datetime(year, month, int(days), int(hours), int(minutes),
int(seconds), int(microseconds),dayofwk, dayofyr)
def _DateFrom360Day(JD):
"""
returns a 'datetime-like' object given Julian Day for a calendar where all
months have 30 days.
Julian Day is a fractional day with a resolution of approximately 0.1 seconds.
"""
if JD < 0:
raise ValueError('Julian Day must be positive')
#jd = int(360. * (year + 4716)) + int(30. * (month - 1)) + day
(F, Z) = math.modf(JD)
year = int((Z - 0.5) / 360.) - 4716
dayofyr = Z - (year + 4716) * 360
month = int((dayofyr - 0.5) / 30) + 1
day = dayofyr - (month - 1) * 30 + F
# Convert fractions of a day to time
(dfrac, days) = math.modf(day / 1.0)
(hfrac, hours) = math.modf(dfrac * 24.0)
(mfrac, minutes) = math.modf(hfrac * 60.0)
(sfrac, seconds) = math.modf(mfrac * 60.0)
microseconds = sfrac*1.e6
return datetime(year, month, int(days), int(hours), int(minutes),
int(seconds), int(microseconds), -1, dayofyr)
def _dateparse(timestr):
"""parse a string of the form time-units since yyyy-mm-dd hh:mm:ss
return a tuple (units,utc_offset, datetimeinstance)"""
timestr_split = timestr.split()
units = timestr_split[0].lower()
if units not in _units:
raise ValueError(
"units must be one of 'seconds', 'minutes', 'hours' or 'days' (or singular version of these), got '%s'" % units)
if timestr_split[1].lower() != 'since':
raise ValueError("no 'since' in unit_string")
# parse the date string.
n = timestr.find('since') + 6
year, month, day, hour, minute, second, utc_offset = _parse_date(
timestr[n:].strip())
return units, utc_offset, datetime(year, month, day, hour, minute, second)
class utime:
"""
Performs conversions of netCDF time coordinate
data to/from datetime objects.
To initialize: C{t = utime(unit_string,calendar='standard')}
where
B{C{unit_string}} is a string of the form
C{'time-units since <time-origin>'} defining the time units.
Valid time-units are days, hours, minutes and seconds (the singular forms
are also accepted). An example unit_string would be C{'hours
since 0001-01-01 00:00:00'}.
The B{C{calendar}} keyword describes the calendar used in the time calculations.
All the values currently defined in the U{CF metadata convention
<http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.html#time-coordinate>}
are accepted. The default is C{'standard'}, which corresponds to the mixed
Gregorian/Julian calendar used by the C{udunits library}. Valid calendars
are:
C{'gregorian'} or C{'standard'} (default):
Mixed Gregorian/Julian calendar as defined by udunits.
C{'proleptic_gregorian'}:
A Gregorian calendar extended to dates before 1582-10-15. That is, a year
is a leap year if either (i) it is divisible by 4 but not by 100 or (ii)
it is divisible by 400.
C{'noleap'} or C{'365_day'}:
Gregorian calendar without leap years, i.e., all years are 365 days long.
all_leap or 366_day Gregorian calendar with every year being a leap year,
i.e., all years are 366 days long.
C{'360_day'}:
All years are 360 days divided into 30 day months.
C{'julian'}:
Proleptic Julian calendar, extended to dates after 1582-10-5. A year is a
leap year if it is divisible by 4.
The C{L{num2date}} and C{L{date2num}} class methods can used to convert datetime
instances to/from the specified time units using the specified calendar.
The datetime instances returned by C{num2date} are 'real' python datetime
objects if the date falls in the Gregorian calendar (i.e.
C{calendar='proleptic_gregorian', 'standard'} or C{'gregorian'} and
the date is after 1582-10-15). Otherwise, they are 'phony' datetime
objects which are actually instances of C{L{netcdftime.datetime}}. This is
because the python datetime module cannot handle the weird dates in some
calendars (such as C{'360_day'} and C{'all_leap'}) which don't exist in any real
world calendar.
Example usage:
>>> from netcdftime import utime
>>> from datetime import datetime
>>> cdftime = utime('hours since 0001-01-01 00:00:00')
>>> date = datetime.now()
>>> print date
2006-03-17 16:04:02.561678
>>>
>>> t = cdftime.date2num(date)
>>> print t
17577328.0672
>>>
>>> date = cdftime.num2date(t)
>>> print date
2006-03-17 16:04:02
>>>
The resolution of the transformation operation is approximately 0.1 seconds.
Warning: Dates between 1582-10-5 and 1582-10-15 do not exist in the
C{'standard'} or C{'gregorian'} calendars. An exception will be raised if you pass
a 'datetime-like' object in that range to the C{L{date2num}} class method.
Words of Wisdom from the British MetOffice concerning reference dates:
"udunits implements the mixed Gregorian/Julian calendar system, as
followed in England, in which dates prior to 1582-10-15 are assumed to use
the Julian calendar. Other software cannot be relied upon to handle the
change of calendar in the same way, so for robustness it is recommended
that the reference date be later than 1582. If earlier dates must be used,
it should be noted that udunits treats 0 AD as identical to 1 AD."
@ivar origin: datetime instance defining the origin of the netCDF time variable.
@ivar calendar: the calendar used (as specified by the C{calendar} keyword).
@ivar unit_string: a string defining the the netCDF time variable.
@ivar units: the units part of C{unit_string} (i.e. 'days', 'hours', 'seconds').
"""
def __init__(self, unit_string, calendar='standard'):
"""
@param unit_string: a string of the form
C{'time-units since <time-origin>'} defining the time units.
Valid time-units are days, hours, minutes and seconds (the singular forms
are also accepted). An example unit_string would be C{'hours
since 0001-01-01 00:00:00'}.
@keyword calendar: describes the calendar used in the time calculations.
All the values currently defined in the U{CF metadata convention
<http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.html#time-coordinate>}
are accepted. The default is C{'standard'}, which corresponds to the mixed
Gregorian/Julian calendar used by the C{udunits library}. Valid calendars
are:
- C{'gregorian'} or C{'standard'} (default):
Mixed Gregorian/Julian calendar as defined by udunits.
- C{'proleptic_gregorian'}:
A Gregorian calendar extended to dates before 1582-10-15. That is, a year
is a leap year if either (i) it is divisible by 4 but not by 100 or (ii)
it is divisible by 400.
- C{'noleap'} or C{'365_day'}:
Gregorian calendar without leap years, i.e., all years are 365 days long.
- C{'all_leap'} or C{'366_day'}:
Gregorian calendar with every year being a leap year, i.e.,
all years are 366 days long.
-C{'360_day'}:
All years are 360 days divided into 30 day months.
-C{'julian'}:
Proleptic Julian calendar, extended to dates after 1582-10-5. A year is a
leap year if it is divisible by 4.
@returns: A class instance which may be used for converting times from netCDF
units to datetime objects.
"""
calendar = calendar.lower()
if calendar in _calendars:
self.calendar = calendar
else:
raise ValueError(
"calendar must be one of %s, got '%s'" % (str(_calendars), calendar))
units, tzoffset, self.origin = _dateparse(unit_string)
# real-world calendars limited to positive reference years.
if self.calendar in ['julian', 'standard', 'gregorian', 'proleptic_gregorian']:
if self.origin.year == 0:
msg='zero not allowed as a reference year, does not exist in Julian or Gregorian calendars'
raise ValueError(msg)
elif self.origin.year < 0:
msg='negative reference year in time units, must be >= 1'
raise ValueError(msg)
self.tzoffset = tzoffset # time zone offset in minutes
self.units = units
self.unit_string = unit_string
if self.calendar in ['noleap', '365_day'] and self.origin.month == 2 and self.origin.day == 29:
raise ValueError(
'cannot specify a leap day as the reference time with the noleap calendar')
if self.calendar == '360_day' and self.origin.day > 30:
raise ValueError(
'there are only 30 days in every month with the 360_day calendar')
if self.calendar in ['noleap', '365_day']:
self._jd0 = _NoLeapDayFromDate(self.origin)
elif self.calendar in ['all_leap', '366_day']:
self._jd0 = _AllLeapFromDate(self.origin)
elif self.calendar == '360_day':
self._jd0 = _360DayFromDate(self.origin)
else:
self._jd0 = JulianDayFromDate(self.origin, calendar=self.calendar)
def date2num(self, date):
"""
Returns C{time_value} in units described by L{unit_string}, using
the specified L{calendar}, given a 'datetime-like' object.
The datetime object must represent UTC with no time-zone offset.
If there is a time-zone offset implied by L{unit_string}, it will
be applied to the returned numeric values.
Resolution is approximately 0.1 seconds.
If C{calendar = 'standard'} or C{'gregorian'} (indicating
that the mixed Julian/Gregorian calendar is to be used), an
exception will be raised if the 'datetime-like' object describes
a date between 1582-10-5 and 1582-10-15.
Works for scalars, sequences and numpy arrays.
Returns a scalar if input is a scalar, else returns a numpy array.
"""
isscalar = False
try:
date[0]
except:
isscalar = True
if not isscalar:
date = numpy.array(date)
shape = date.shape
if self.calendar in ['julian', 'standard', 'gregorian', 'proleptic_gregorian']:
if isscalar:
jdelta = JulianDayFromDate(date, self.calendar) - self._jd0
else:
jdelta = JulianDayFromDate(
date.flat, self.calendar) - self._jd0
elif self.calendar in ['noleap', '365_day']:
if isscalar:
if date.month == 2 and date.day == 29:
raise ValueError(
'there is no leap day in the noleap calendar')
jdelta = _NoLeapDayFromDate(date) - self._jd0
else:
jdelta = []
for d in date.flat:
if d.month == 2 and d.day == 29:
raise ValueError(
'there is no leap day in the noleap calendar')
jdelta.append(_NoLeapDayFromDate(d) - self._jd0)
elif self.calendar in ['all_leap', '366_day']:
if isscalar:
jdelta = _AllLeapFromDate(date) - self._jd0
else:
jdelta = [_AllLeapFromDate(d) - self._jd0 for d in date.flat]
elif self.calendar == '360_day':
if isscalar:
if date.day > 30:
raise ValueError(
'there are only 30 days in every month with the 360_day calendar')
jdelta = _360DayFromDate(date) - self._jd0
else:
jdelta = []
for d in date.flat:
if d.day > 30:
raise ValueError(
'there are only 30 days in every month with the 360_day calendar')
jdelta.append(_360DayFromDate(d) - self._jd0)
if not isscalar:
jdelta = numpy.array(jdelta)
# convert to desired units, subtract time zone offset.
if self.units in microsec_units:
jdelta = jdelta * 86400. * 1.e6 - self.tzoffset * 60. * 1.e6
elif self.units in millisec_units:
jdelta = jdelta * 86400. * 1.e3 - self.tzoffset * 60. * 1.e3
elif self.units in sec_units:
jdelta = jdelta * 86400. - self.tzoffset * 60.
elif self.units in min_units:
jdelta = jdelta * 1440. - self.tzoffset
elif self.units in hr_units:
jdelta = jdelta * 24. - self.tzoffset / 60.
elif self.units in day_units:
jdelta = jdelta - self.tzoffset / 1440.
else:
raise ValueError('unsupported time units')
if isscalar:
return jdelta
else:
return numpy.reshape(jdelta, shape)
def num2date(self, time_value):
"""
Return a 'datetime-like' object given a C{time_value} in units
described by L{unit_string}, using L{calendar}.
dates are in UTC with no offset, even if L{unit_string} contains
a time zone offset from UTC.
Resolution is approximately 0.1 seconds.
Works for scalars, sequences and numpy arrays.
Returns a scalar if input is a scalar, else returns a numpy array.
The datetime instances returned by C{num2date} are 'real' python datetime
objects if the date falls in the Gregorian calendar (i.e.
C{calendar='proleptic_gregorian'}, or C{calendar = 'standard'/'gregorian'} and
the date is after 1582-10-15). Otherwise, they are 'phony' datetime
objects which are actually instances of netcdftime.datetime. This is
because the python datetime module cannot handle the weird dates in some
calendars (such as C{'360_day'} and C{'all_leap'}) which
do not exist in any real world calendar.
"""
isscalar = False
try:
time_value[0]
except:
isscalar = True
ismasked = False
if hasattr(time_value, 'mask'):
mask = time_value.mask
ismasked = True
if not isscalar:
time_value = numpy.array(time_value, dtype='d')
shape = time_value.shape
# convert to desired units, add time zone offset.
if self.units in microsec_units:
jdelta = time_value / 86400000000. + self.tzoffset / 1440.
elif self.units in millisec_units:
jdelta = time_value / 86400000. + self.tzoffset / 1440.
elif self.units in sec_units:
jdelta = time_value / 86400. + self.tzoffset / 1440.
elif self.units in min_units:
jdelta = time_value / 1440. + self.tzoffset / 1440.
elif self.units in hr_units:
jdelta = time_value / 24. + self.tzoffset / 1440.
elif self.units in day_units:
jdelta = time_value + self.tzoffset / 1440.
else:
raise ValueError('unsupported time units')
jd = self._jd0 + jdelta
if self.calendar in ['julian', 'standard', 'gregorian', 'proleptic_gregorian']:
if not isscalar:
if ismasked:
date = []
for j, m in zip(jd.flat, mask.flat):
if not m:
date.append(DateFromJulianDay(j, self.calendar))
else:
date.append(None)
else:
date = DateFromJulianDay(jd.flat, self.calendar)
else:
if ismasked and mask.item():
date = None
else:
date = DateFromJulianDay(jd, self.calendar)
elif self.calendar in ['noleap', '365_day']:
if not isscalar:
date = [_DateFromNoLeapDay(j) for j in jd.flat]
else:
date = _DateFromNoLeapDay(jd)
elif self.calendar in ['all_leap', '366_day']:
if not isscalar:
date = [_DateFromAllLeap(j) for j in jd.flat]
else:
date = _DateFromAllLeap(jd)
elif self.calendar == '360_day':
if not isscalar:
date = [_DateFrom360Day(j) for j in jd.flat]
else:
date = _DateFrom360Day(jd)
if isscalar:
return date
else:
return numpy.reshape(numpy.array(date), shape)
def _parse_timezone(tzstring):
"""Parses ISO 8601 time zone specs into tzinfo offsets
Adapted from pyiso8601 (http://code.google.com/p/pyiso8601/)
"""
if tzstring == "Z":
return 0
# This isn't strictly correct, but it's common to encounter dates without
# timezones so I'll assume the default (which defaults to UTC).
if tzstring is None:
return 0
m = TIMEZONE_REGEX.match(tzstring)
prefix, hours, minutes = m.groups()
hours, minutes = int(hours), int(minutes)
if prefix == "-":
hours = -hours
minutes = -minutes
return minutes + hours * 60.
def _parse_date(datestring):
"""Parses ISO 8601 dates into datetime objects
The timezone is parsed from the date string, assuming UTC
by default.
Adapted from pyiso8601 (http://code.google.com/p/pyiso8601/)
"""
if not isinstance(datestring, str) and not isinstance(datestring, unicode):
raise ValueError("Expecting a string %r" % datestring)
m = ISO8601_REGEX.match(datestring.strip())
if not m:
raise ValueError("Unable to parse date string %r" % datestring)
groups = m.groupdict()
tzoffset_mins = _parse_timezone(groups["timezone"])
if groups["hour"] is None:
groups["hour"] = 0
if groups["minute"] is None:
groups["minute"] = 0
if groups["second"] is None:
groups["second"] = 0
# if groups["fraction"] is None:
# groups["fraction"] = 0
# else:
# groups["fraction"] = int(float("0.%s" % groups["fraction"]) * 1e6)
iyear = int(groups["year"])
return iyear, int(groups["month"]), int(groups["day"]),\
int(groups["hour"]), int(groups["minute"]), int(groups["second"]),\
tzoffset_mins
def _check_index(indices, times, nctime, calendar, select):
"""Return True if the time indices given correspond to the given times,
False otherwise.
Parameters:
indices : sequence of integers
Positive integers indexing the time variable.
times : sequence of times.
Reference times.
nctime : netCDF Variable object
NetCDF time object.
calendar : string
Calendar of nctime.
select : string
Index selection method.
"""
N = nctime.shape[0]
if (indices < 0).any():
return False
if (indices >= N).any():
return False
try:
t = nctime[indices]
nctime = nctime
# WORKAROUND TO CHANGES IN SLICING BEHAVIOUR in 1.1.2
# this may be unacceptably slow...
# if indices are unsorted, or there are duplicate
# values in indices, read entire time variable into numpy
# array so numpy slicing rules can be used.
except IndexError:
nctime = nctime[:]
t = nctime[indices]
# if fancy indexing not available, fall back on this.
# t=[]
# for ind in indices:
# t.append(nctime[ind])
if select == 'exact':
return numpy.all(t == times)
elif select == 'before':
ta = nctime[numpy.clip(indices + 1, 0, N - 1)]
return numpy.all(t <= times) and numpy.all(ta > times)
elif select == 'after':
tb = nctime[numpy.clip(indices - 1, 0, N - 1)]
return numpy.all(t >= times) and numpy.all(tb < times)
elif select == 'nearest':
ta = nctime[numpy.clip(indices + 1, 0, N - 1)]
tb = nctime[numpy.clip(indices - 1, 0, N - 1)]
delta_after = ta - t
delta_before = t - tb
delta_check = numpy.abs(times - t)
return numpy.all(delta_check <= delta_after) and numpy.all(delta_check <= delta_before)
def date2index(dates, nctime, calendar=None, select='exact'):
"""
date2index(dates, nctime, calendar=None, select='exact')
Return indices of a netCDF time variable corresponding to the given dates.
@param dates: A datetime object or a sequence of datetime objects.
The datetime objects should not include a time-zone offset.
@param nctime: A netCDF time variable object. The nctime object must have a
C{units} attribute. The entries are assumed to be stored in increasing
order.
@param calendar: Describes the calendar used in the time calculation.
Valid calendars C{'standard', 'gregorian', 'proleptic_gregorian'
'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'}.
Default is C{'standard'}, which is a mixed Julian/Gregorian calendar
If C{calendar} is None, its value is given by C{nctime.calendar} or
C{standard} if no such attribute exists.
@param select: C{'exact', 'before', 'after', 'nearest'}
The index selection method. C{exact} will return the indices perfectly
matching the dates given. C{before} and C{after} will return the indices
corresponding to the dates just before or just after the given dates if
an exact match cannot be found. C{nearest} will return the indices that
correpond to the closest dates.
"""
try:
nctime.units
except AttributeError:
raise AttributeError("netcdf time variable is missing a 'units' attribute")
# Setting the calendar.
if calendar == None:
calendar = getattr(nctime, 'calendar', 'standard')
cdftime = utime(nctime.units,calendar=calendar)
times = cdftime.date2num(dates)
return time2index(times, nctime, calendar=calendar, select=select)
def time2index(times, nctime, calendar=None, select='exact'):
"""
time2index(times, nctime, calendar=None, select='exact')
Return indices of a netCDF time variable corresponding to the given times.
@param times: A numeric time or a sequence of numeric times.
@param nctime: A netCDF time variable object. The nctime object must have a
C{units} attribute. The entries are assumed to be stored in increasing
order.
@param calendar: Describes the calendar used in the time calculation.
Valid calendars C{'standard', 'gregorian', 'proleptic_gregorian'
'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'}.
Default is C{'standard'}, which is a mixed Julian/Gregorian calendar
If C{calendar} is None, its value is given by C{nctime.calendar} or
C{standard} if no such attribute exists.
@param select: C{'exact', 'before', 'after', 'nearest'}
The index selection method. C{exact} will return the indices perfectly
matching the times given. C{before} and C{after} will return the indices
corresponding to the times just before or just after the given times if
an exact match cannot be found. C{nearest} will return the indices that
correpond to the closest times.
"""
try:
nctime.units
except AttributeError:
raise AttributeError("netcdf time variable is missing a 'units' attribute")
# Setting the calendar.
if calendar == None:
calendar = getattr(nctime, 'calendar', 'standard')
num = numpy.atleast_1d(times)
N = len(nctime)
# Trying to infer the correct index from the starting time and the stride.
# This assumes that the times are increasing uniformly.
if len(nctime) >= 2:
t0, t1 = nctime[:2]
dt = t1 - t0
else:
t0 = nctime[0]
dt = 1.
if select in ['exact', 'before']:
index = numpy.array((num - t0) / dt, int)
elif select == 'after':
index = numpy.array(numpy.ceil((num - t0) / dt), int)
else:
index = numpy.array(numpy.around((num - t0) / dt), int)
# Checking that the index really corresponds to the given time.
# If the times do not correspond, then it means that the times
# are not increasing uniformly and we try the bisection method.
if not _check_index(index, times, nctime, calendar, select):
# Use the bisection method. Assumes nctime is ordered.
import bisect
index = numpy.array([bisect.bisect_right(nctime, n) for n in num], int)
before = index == 0
index = numpy.array([bisect.bisect_left(nctime, n) for n in num], int)
after = index == N
if select in ['before', 'exact'] and numpy.any(before):
raise ValueError(
'Some of the times given are before the first time in `nctime`.')
if select in ['after', 'exact'] and numpy.any(after):
raise ValueError(
'Some of the times given are after the last time in `nctime`.')
# Find the times for which the match is not perfect.
# Use list comprehension instead of the simpler `nctime[index]` since
# not all time objects support numpy integer indexing (eg dap).
index[after] = N - 1
ncnum = numpy.squeeze([nctime[i] for i in index])
mismatch = numpy.nonzero(ncnum != num)[0]
if select == 'exact':
if len(mismatch) > 0:
raise ValueError(
'Some of the times specified were not found in the `nctime` variable.')
elif select == 'before':
index[after] = N
index[mismatch] -= 1
elif select == 'after':
pass
elif select == 'nearest':
nearest_to_left = num[mismatch] < numpy.array(
[float(nctime[i - 1]) + float(nctime[i]) for i in index[mismatch]]) / 2.
index[mismatch] = index[mismatch] - 1 * nearest_to_left
else:
raise ValueError(
"%s is not an option for the `select` argument." % select)
# Correct for indices equal to -1
index[before] = 0
# convert numpy scalars or single element arrays to python ints.
return _toscalar(index)
def _toscalar(a):
if a.shape in [(), (1,)]:
return a.item()
else:
return a
|