This file is indexed.

/usr/lib/python3/dist-packages/netcdftime/netcdftime.py is in python3-netcdf4 1.2.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
"""
Performs conversions of netCDF time coordinate data to/from datetime objects.
"""
import numpy as np
import math
import numpy
import re
from datetime import datetime as real_datetime
try:
    from itertools import izip as zip
except ImportError:  # python 3.x
    pass

from ._datetime import datetime

microsec_units = ['microseconds','microsecond', 'microsec', 'microsecs']
millisec_units = ['milliseconds', 'millisecond', 'millisec', 'millisecs']
sec_units =      ['second', 'seconds', 'sec', 'secs', 's']
min_units =      ['minute', 'minutes', 'min', 'mins']
hr_units =       ['hour', 'hours', 'hr', 'hrs', 'h']
day_units =      ['day', 'days', 'd']
_units = microsec_units+millisec_units+sec_units+min_units+hr_units+day_units
_calendars = ['standard', 'gregorian', 'proleptic_gregorian',
              'noleap', 'julian', 'all_leap', '365_day', '366_day', '360_day']

__version__ = '1.4.1'

# Adapted from http://delete.me.uk/2005/03/iso8601.html
ISO8601_REGEX = re.compile(r"(?P<year>[+-]?[0-9]{1,4})(-(?P<month>[0-9]{1,2})(-(?P<day>[0-9]{1,2})"
                           r"(((?P<separator1>.)(?P<hour>[0-9]{1,2}):(?P<minute>[0-9]{1,2})(:(?P<second>[0-9]{1,2})(\.(?P<fraction>[0-9]+))?)?)?"
                           r"((?P<separator2>.?)(?P<timezone>Z|(([-+])([0-9]{1,2}):([0-9]{1,2}))))?)?)?)?"
                           )
TIMEZONE_REGEX = re.compile(
    "(?P<prefix>[+-])(?P<hours>[0-9]{1,2}):(?P<minutes>[0-9]{1,2})")

def JulianDayFromDate(date, calendar='standard'):
    """

    creates a Julian Day from a 'datetime-like' object.  Returns the fractional
    Julian Day (resolution approx 0.1 second).

    if calendar='standard' or 'gregorian' (default), Julian day follows Julian
    Calendar on and before 1582-10-5, Gregorian calendar after 1582-10-15.

    if calendar='proleptic_gregorian', Julian Day follows gregorian calendar.

    if calendar='julian', Julian Day follows julian calendar.

    Algorithm:

    Meeus, Jean (1998) Astronomical Algorithms (2nd Edition). Willmann-Bell,
    Virginia. p. 63

    """

    # based on redate.py by David Finlayson.

    # check if input was scalar and change return accordingly
    isscalar = False
    try:
        date[0]
    except:
        isscalar = True

    date = np.atleast_1d(np.array(date))
    year = np.empty(len(date), dtype=np.int32)
    month = year.copy()
    day = year.copy()
    hour = year.copy()
    minute = year.copy()
    second = year.copy()
    microsecond = year.copy()
    for i, d in enumerate(date):
        year[i] = d.year
        month[i] = d.month
        day[i] = d.day
        hour[i] = d.hour
        minute[i] = d.minute
        second[i] = d.second
        microsecond[i] = d.microsecond
    # Convert time to fractions of a day
    day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0

    # Start Meeus algorithm (variables are in his notation)
    month_lt_3 = month < 3
    month[month_lt_3] = month[month_lt_3] + 12
    year[month_lt_3] = year[month_lt_3] - 1

    # MC - assure array
    # A = np.int64(year / 100)
    A = (year / 100).astype(np.int64)

    # MC
    # jd = int(365.25 * (year + 4716)) + int(30.6001 * (month + 1)) + \
    #      day - 1524.5
    jd = 365. * year + np.int32(0.25 * year + 2000.) + np.int32(30.6001 * (month + 1)) + \
        day + 1718994.5

    # optionally adjust the jd for the switch from
    # the Julian to Gregorian Calendar
    # here assumed to have occurred the day after 1582 October 4
    if calendar in ['standard', 'gregorian']:
        # MC - do not have to be contiguous dates
        # if np.min(jd) >= 2299170.5:
        #     # 1582 October 15 (Gregorian Calendar)
        #     B = 2 - A + np.int32(A / 4)
        # elif np.max(jd) < 2299160.5:
        #     # 1582 October 5 (Julian Calendar)
        #     B = np.zeros(len(jd))
        # else:
        #     print(date, calendar, jd)
        #     raise ValueError(
        #         'impossible date (falls in gap between end of Julian calendar and beginning of Gregorian calendar')
        if np.any((jd >= 2299160.5) & (jd < 2299170.5)): # missing days in Gregorian calendar
            raise ValueError(
                'impossible date (falls in gap between end of Julian calendar and beginning of Gregorian calendar')
        B = np.zeros(len(jd))             # 1582 October 5 (Julian Calendar)
        ii = np.where(jd >= 2299170.5)[0] # 1582 October 15 (Gregorian Calendar)
        if ii.size>0:
            B[ii] = 2 - A[ii] + np.int32(A[ii] / 4)
    elif calendar == 'proleptic_gregorian':
        B = 2 - A + np.int32(A / 4)
    elif calendar == 'julian':
        B = np.zeros(len(jd))
    else:
        raise ValueError(
            'unknown calendar, must be one of julian,standard,gregorian,proleptic_gregorian, got %s' % calendar)

    # adjust for Julian calendar if necessary
    jd = jd + B

    # Add a small offset (proportional to Julian date) for correct re-conversion.
    # This is about 45 microseconds in 2000 for Julian date starting -4712.
    # (pull request #433).
    eps = np.finfo(float).eps
    eps = np.maximum(eps*jd, eps)
    jd += eps

    if isscalar:
        return jd[0]
    else:
        return jd


def _NoLeapDayFromDate(date):
    """

creates a Julian Day for a calendar with no leap years from a datetime
instance.  Returns the fractional Julian Day (resolution approx 0.1 second).

    """

    year = date.year
    month = date.month
    day = date.day
    hour = date.hour
    minute = date.minute
    second = date.second
    microsecond = date.microsecond
    # Convert time to fractions of a day
    day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0

    # Start Meeus algorithm (variables are in his notation)
    if (month < 3):
        month = month + 12
        year = year - 1

    jd = int(365. * (year + 4716)) + int(30.6001 * (month + 1)) + \
        day - 1524.5

    return jd


def _AllLeapFromDate(date):
    """

creates a Julian Day for a calendar where all years have 366 days from
a 'datetime-like' object.
Returns the fractional Julian Day (resolution approx 0.1 second).

    """

    year = date.year
    month = date.month
    day = date.day
    hour = date.hour
    minute = date.minute
    second = date.second
    microsecond = date.microsecond
    # Convert time to fractions of a day
    day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0

    # Start Meeus algorithm (variables are in his notation)
    if (month < 3):
        month = month + 12
        year = year - 1

    jd = int(366. * (year + 4716)) + int(30.6001 * (month + 1)) + \
        day - 1524.5

    return jd


def _360DayFromDate(date):
    """

creates a Julian Day for a calendar where all months have 30 daysfrom
a 'datetime-like' object.
Returns the fractional Julian Day (resolution approx 0.1 second).

    """

    year = date.year
    month = date.month
    day = date.day
    hour = date.hour
    minute = date.minute
    second = date.second
    microsecond = date.microsecond
    # Convert time to fractions of a day
    day = day + hour / 24.0 + minute / 1440.0 + (second + microsecond/1.e6) / 86400.0

    jd = int(360. * (year + 4716)) + int(30. * (month - 1)) + day

    return jd


def DateFromJulianDay(JD, calendar='standard'):
    """

    returns a 'datetime-like' object given Julian Day. Julian Day is a
    fractional day with a resolution of approximately 0.1 seconds.

    if calendar='standard' or 'gregorian' (default), Julian day follows Julian
    Calendar on and before 1582-10-5, Gregorian calendar after  1582-10-15.

    if calendar='proleptic_gregorian', Julian Day follows gregorian calendar.

    if calendar='julian', Julian Day follows julian calendar.

    The datetime object is a 'real' datetime object if the date falls in
    the Gregorian calendar (i.e. calendar='proleptic_gregorian', or
    calendar = 'standard'/'gregorian' and the date is after 1582-10-15).
    Otherwise, it's a 'phony' datetime object which is actually an instance
    of netcdftime.datetime.


    Algorithm:

    Meeus, Jean (1998) Astronomical Algorithms (2nd Edition). Willmann-Bell,
    Virginia. p. 63
    """

    # based on redate.py by David Finlayson.

    julian = np.array(JD, dtype=float)

    if np.min(julian) < 0:
        raise ValueError('Julian Day must be positive')

    dayofwk = np.atleast_1d(np.int32(np.fmod(np.int32(julian + 1.5), 7)))
    # get the day (Z) and the fraction of the day (F)
    # add 0.000005 which is 452 ms in case of jd being after
    # second 23:59:59 of a day we want to round to the next day see issue #75
    Z = np.atleast_1d(np.int32(np.round(julian)))
    F = np.atleast_1d(julian + 0.5 - Z).astype(np.float64)
    if calendar in ['standard', 'gregorian']:
        # MC
        # alpha = int((Z - 1867216.25)/36524.25)
        # A = Z + 1 + alpha - int(alpha/4)
        alpha = np.int32(((Z - 1867216.) - 0.25) / 36524.25)
        A = Z + 1 + alpha - np.int32(0.25 * alpha)
        # check if dates before oct 5th 1582 are in the array
        ind_before = np.where(julian < 2299160.5)[0]
        if len(ind_before) > 0:
            A[ind_before] = Z[ind_before]

    elif calendar == 'proleptic_gregorian':
        # MC
        # alpha = int((Z - 1867216.25)/36524.25)
        # A = Z + 1 + alpha - int(alpha/4)
        alpha = np.int32(((Z - 1867216.) - 0.25) / 36524.25)
        A = Z + 1 + alpha - np.int32(0.25 * alpha)
    elif calendar == 'julian':
        A = Z
    else:
        raise ValueError(
            'unknown calendar, must be one of julian,standard,gregorian,proleptic_gregorian, got %s' % calendar)

    B = A + 1524
    # MC
    # C = int((B - 122.1)/365.25)
    # D = int(365.25 * C)
    C = np.atleast_1d(np.int32(6680. + ((B - 2439870.) - 122.1) / 365.25))
    D = np.atleast_1d(np.int32(365 * C + np.int32(0.25 * C)))
    E = np.atleast_1d(np.int32((B - D) / 30.6001))

    # Convert to date
    day = np.clip(B - D - np.int64(30.6001 * E) + F, 1, None)
    nday = B - D - 123
    dayofyr = nday - 305
    ind_nday_before = np.where(nday <= 305)[0]
    if len(ind_nday_before) > 0:
        dayofyr[ind_nday_before] = nday[ind_nday_before] + 60
    # MC
    # if E < 14:
    #     month = E - 1
    # else:
    #     month = E - 13

    # if month > 2:
    #     year = C - 4716
    # else:
    #     year = C - 4715
    month = E - 1
    month[month > 12] = month[month > 12] - 12
    year = C - 4715
    year[month > 2] = year[month > 2] - 1
    year[year <= 0] = year[year <= 0] - 1

    # a leap year?
    leap = np.zeros(len(year),dtype=dayofyr.dtype)
    leap[year % 4 == 0] = 1
    if calendar == 'proleptic_gregorian':
        leap[(year % 100 == 0) & (year % 400 != 0)] = 0
    elif calendar in ['standard', 'gregorian']:
        leap[(year % 100 == 0) & (year % 400 != 0) & (julian < 2299160.5)] = 0

    inc_idx = np.where((leap == 1) & (month > 2))[0]
    dayofyr[inc_idx] = dayofyr[inc_idx] + leap[inc_idx]

    # Subtract the offset from JulianDayFromDate from the microseconds (pull
    # request #433).
    eps = np.finfo(float).eps
    eps = np.maximum(eps*julian, eps)
    hour = np.clip((F * 24.).astype(np.int64), 0, 23)
    F   -= hour / 24.
    minute = np.clip((F * 1440.).astype(np.int64), 0, 59)
    # this is an overestimation due to added offset in JulianDayFromDate
    second = np.clip((F - minute / 1440.) * 86400., 0, None)
    microsecond = (second % 1)*1.e6
    # remove the offset from the microsecond calculation.
    microsecond = np.clip(microsecond - eps*86400.*1e6, 0, 999999)

    # convert year, month, day, hour, minute, second to int32
    year = year.astype(np.int32)
    month = month.astype(np.int32)
    day = day.astype(np.int32)
    hour = hour.astype(np.int32)
    minute = minute.astype(np.int32)
    second = second.astype(np.int32)
    microsecond = microsecond.astype(np.int32)

    # check if input was scalar and change return accordingly
    isscalar = False
    try:
        JD[0]
    except:
        isscalar = True
    # return a 'real' datetime instance if calendar is gregorian.
    if calendar in 'proleptic_gregorian' or \
            (calendar in ['standard', 'gregorian'] and len(ind_before) == 0):
        if not isscalar:
            return np.array([real_datetime(*args)
                             for args in
                             zip(year, month, day, hour, minute, second,
                                 microsecond)])

        else:
            return real_datetime(year[0], month[0], day[0], hour[0],
                                 minute[0], second[0], microsecond[0])
    else:
        # or else, return a 'datetime-like' instance.
        if not isscalar:
            return np.array([datetime(*args)
                             for args in
                             zip(year, month, day, hour, minute,
                                 second, microsecond, dayofwk, dayofyr)])
        else:
            return datetime(year[0], month[0], day[0], hour[0],
                            minute[0], second[0], microsecond[0], dayofwk[0],
                            dayofyr[0])


def _DateFromNoLeapDay(JD):
    """

returns a 'datetime-like' object given Julian Day for a calendar with no leap
days. Julian Day is a fractional day with a resolution of approximately 0.1 seconds.

    """

    # based on redate.py by David Finlayson.

    if JD < 0:
        raise ValueError('Julian Day must be positive')

    dayofwk = int(math.fmod(int(JD + 1.5), 7))
    (F, Z) = math.modf(JD + 0.5)
    Z = int(Z)
    A = Z
    B = A + 1524
    C = int((B - 122.1) / 365.)
    D = int(365. * C)
    E = int((B - D) / 30.6001)

    # Convert to date
    day = B - D - int(30.6001 * E) + F
    nday = B - D - 123
    if nday <= 305:
        dayofyr = nday + 60
    else:
        dayofyr = nday - 305
    if E < 14:
        month = E - 1
    else:
        month = E - 13

    if month > 2:
        year = C - 4716
    else:
        year = C - 4715

    # Convert fractions of a day to time
    (dfrac, days) = math.modf(day / 1.0)
    (hfrac, hours) = math.modf(dfrac * 24.0)
    (mfrac, minutes) = math.modf(hfrac * 60.0)
    (sfrac, seconds) = math.modf(mfrac * 60.0)
    microseconds = sfrac*1.e6

    return datetime(year, month, int(days), int(hours), int(minutes),
            int(seconds), int(microseconds),dayofwk, dayofyr)


def _DateFromAllLeap(JD):
    """

returns a 'datetime-like' object given Julian Day for a calendar where all
years have 366 days.
Julian Day is a fractional day with a resolution of approximately 0.1 seconds.

    """

    # based on redate.py by David Finlayson.

    if JD < 0:
        raise ValueError('Julian Day must be positive')

    dayofwk = int(math.fmod(int(JD + 1.5), 7))
    (F, Z) = math.modf(JD + 0.5)
    Z = int(Z)
    A = Z
    B = A + 1524
    C = int((B - 122.1) / 366.)
    D = int(366. * C)
    E = int((B - D) / 30.6001)

    # Convert to date
    day = B - D - int(30.6001 * E) + F
    nday = B - D - 123
    if nday <= 305:
        dayofyr = nday + 60
    else:
        dayofyr = nday - 305
    if E < 14:
        month = E - 1
    else:
        month = E - 13
    if month > 2:
        dayofyr = dayofyr + 1

    if month > 2:
        year = C - 4716
    else:
        year = C - 4715

    # Convert fractions of a day to time
    (dfrac, days) = math.modf(day / 1.0)
    (hfrac, hours) = math.modf(dfrac * 24.0)
    (mfrac, minutes) = math.modf(hfrac * 60.0)
    (sfrac, seconds) = math.modf(mfrac * 60.0)
    microseconds = sfrac*1.e6

    return datetime(year, month, int(days), int(hours), int(minutes),
            int(seconds), int(microseconds),dayofwk, dayofyr)


def _DateFrom360Day(JD):
    """

returns a 'datetime-like' object given Julian Day for a calendar where all
months have 30 days.
Julian Day is a fractional day with a resolution of approximately 0.1 seconds.

    """

    if JD < 0:
        raise ValueError('Julian Day must be positive')

    #jd = int(360. * (year + 4716)) + int(30. * (month - 1)) + day
    (F, Z) = math.modf(JD)
    year = int((Z - 0.5) / 360.) - 4716
    dayofyr = Z - (year + 4716) * 360
    month = int((dayofyr - 0.5) / 30) + 1
    day = dayofyr - (month - 1) * 30 + F

    # Convert fractions of a day to time
    (dfrac, days) = math.modf(day / 1.0)
    (hfrac, hours) = math.modf(dfrac * 24.0)
    (mfrac, minutes) = math.modf(hfrac * 60.0)
    (sfrac, seconds) = math.modf(mfrac * 60.0)
    microseconds = sfrac*1.e6

    return datetime(year, month, int(days), int(hours), int(minutes),
            int(seconds), int(microseconds), -1, dayofyr)


def _dateparse(timestr):
    """parse a string of the form time-units since yyyy-mm-dd hh:mm:ss
    return a tuple (units,utc_offset, datetimeinstance)"""
    timestr_split = timestr.split()
    units = timestr_split[0].lower()
    if units not in _units:
        raise ValueError(
            "units must be one of 'seconds', 'minutes', 'hours' or 'days' (or singular version of these), got '%s'" % units)
    if timestr_split[1].lower() != 'since':
        raise ValueError("no 'since' in unit_string")
    # parse the date string.
    n = timestr.find('since') + 6
    year, month, day, hour, minute, second, utc_offset = _parse_date(
        timestr[n:].strip())
    return units, utc_offset, datetime(year, month, day, hour, minute, second)


class utime:

    """
Performs conversions of netCDF time coordinate
data to/from datetime objects.

To initialize: C{t = utime(unit_string,calendar='standard')}

where

B{C{unit_string}} is a string of the form
C{'time-units since <time-origin>'} defining the time units.

Valid time-units are days, hours, minutes and seconds (the singular forms
are also accepted). An example unit_string would be C{'hours
since 0001-01-01 00:00:00'}.

The B{C{calendar}} keyword describes the calendar used in the time calculations.
All the values currently defined in the U{CF metadata convention
<http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.html#time-coordinate>}
are accepted. The default is C{'standard'}, which corresponds to the mixed
Gregorian/Julian calendar used by the C{udunits library}. Valid calendars
are:

C{'gregorian'} or C{'standard'} (default):

Mixed Gregorian/Julian calendar as defined by udunits.

C{'proleptic_gregorian'}:

A Gregorian calendar extended to dates before 1582-10-15. That is, a year
is a leap year if either (i) it is divisible by 4 but not by 100 or (ii)
it is divisible by 400.

C{'noleap'} or C{'365_day'}:

Gregorian calendar without leap years, i.e., all years are 365 days long.
all_leap or 366_day Gregorian calendar with every year being a leap year,
i.e., all years are 366 days long.

C{'360_day'}:

All years are 360 days divided into 30 day months.

C{'julian'}:

Proleptic Julian calendar, extended to dates after 1582-10-5. A year is a
leap year if it is divisible by 4.

The C{L{num2date}} and C{L{date2num}} class methods can used to convert datetime
instances to/from the specified time units using the specified calendar.

The datetime instances returned by C{num2date} are 'real' python datetime
objects if the date falls in the Gregorian calendar (i.e.
C{calendar='proleptic_gregorian', 'standard'} or C{'gregorian'} and
the date is after 1582-10-15). Otherwise, they are 'phony' datetime
objects which are actually instances of C{L{netcdftime.datetime}}.  This is
because the python datetime module cannot handle the weird dates in some
calendars (such as C{'360_day'} and C{'all_leap'}) which don't exist in any real
world calendar.


Example usage:

>>> from netcdftime import utime
>>> from datetime import  datetime
>>> cdftime = utime('hours since 0001-01-01 00:00:00')
>>> date = datetime.now()
>>> print date
2006-03-17 16:04:02.561678
>>>
>>> t = cdftime.date2num(date)
>>> print t
17577328.0672
>>>
>>> date = cdftime.num2date(t)
>>> print date
2006-03-17 16:04:02
>>>

The resolution of the transformation operation is approximately 0.1 seconds.

Warning:  Dates between 1582-10-5 and 1582-10-15 do not exist in the
C{'standard'} or C{'gregorian'} calendars.  An exception will be raised if you pass
a 'datetime-like' object in that range to the C{L{date2num}} class method.

Words of Wisdom from the British MetOffice concerning reference dates:

"udunits implements the mixed Gregorian/Julian calendar system, as
followed in England, in which dates prior to 1582-10-15 are assumed to use
the Julian calendar. Other software cannot be relied upon to handle the
change of calendar in the same way, so for robustness it is recommended
that the reference date be later than 1582. If earlier dates must be used,
it should be noted that udunits treats 0 AD as identical to 1 AD."

@ivar origin: datetime instance defining the origin of the netCDF time variable.
@ivar calendar:  the calendar used (as specified by the C{calendar} keyword).
@ivar unit_string:  a string defining the the netCDF time variable.
@ivar units:  the units part of C{unit_string} (i.e. 'days', 'hours', 'seconds').
    """

    def __init__(self, unit_string, calendar='standard'):
        """
@param unit_string: a string of the form
C{'time-units since <time-origin>'} defining the time units.

Valid time-units are days, hours, minutes and seconds (the singular forms
are also accepted). An example unit_string would be C{'hours
since 0001-01-01 00:00:00'}.

@keyword calendar: describes the calendar used in the time calculations.
All the values currently defined in the U{CF metadata convention
<http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.1/cf-conventions.html#time-coordinate>}
are accepted. The default is C{'standard'}, which corresponds to the mixed
Gregorian/Julian calendar used by the C{udunits library}. Valid calendars
are:
 - C{'gregorian'} or C{'standard'} (default):
 Mixed Gregorian/Julian calendar as defined by udunits.
 - C{'proleptic_gregorian'}:
 A Gregorian calendar extended to dates before 1582-10-15. That is, a year
 is a leap year if either (i) it is divisible by 4 but not by 100 or (ii)
 it is divisible by 400.
 - C{'noleap'} or C{'365_day'}:
 Gregorian calendar without leap years, i.e., all years are 365 days long.
 - C{'all_leap'} or C{'366_day'}:
 Gregorian calendar with every year being a leap year, i.e.,
 all years are 366 days long.
 -C{'360_day'}:
 All years are 360 days divided into 30 day months.
 -C{'julian'}:
 Proleptic Julian calendar, extended to dates after 1582-10-5. A year is a
 leap year if it is divisible by 4.

@returns: A class instance which may be used for converting times from netCDF
units to datetime objects.
        """
        calendar = calendar.lower()
        if calendar in _calendars:
            self.calendar = calendar
        else:
            raise ValueError(
                "calendar must be one of %s, got '%s'" % (str(_calendars), calendar))
        units, tzoffset, self.origin = _dateparse(unit_string)
        # real-world calendars limited to positive reference years.
        if self.calendar in ['julian', 'standard', 'gregorian', 'proleptic_gregorian']:
            if self.origin.year == 0:
                msg='zero not allowed as a reference year, does not exist in Julian or Gregorian calendars'
                raise ValueError(msg)
            elif self.origin.year < 0:
                msg='negative reference year in time units, must be >= 1'
                raise ValueError(msg)
        self.tzoffset = tzoffset  # time zone offset in minutes
        self.units = units
        self.unit_string = unit_string
        if self.calendar in ['noleap', '365_day'] and self.origin.month == 2 and self.origin.day == 29:
            raise ValueError(
                'cannot specify a leap day as the reference time with the noleap calendar')
        if self.calendar == '360_day' and self.origin.day > 30:
            raise ValueError(
                'there are only 30 days in every month with the 360_day calendar')
        if self.calendar in ['noleap', '365_day']:
            self._jd0 = _NoLeapDayFromDate(self.origin)
        elif self.calendar in ['all_leap', '366_day']:
            self._jd0 = _AllLeapFromDate(self.origin)
        elif self.calendar == '360_day':
            self._jd0 = _360DayFromDate(self.origin)
        else:
            self._jd0 = JulianDayFromDate(self.origin, calendar=self.calendar)

    def date2num(self, date):
        """
        Returns C{time_value} in units described by L{unit_string}, using
        the specified L{calendar}, given a 'datetime-like' object.

        The datetime object must represent UTC with no time-zone offset.
        If there is a time-zone offset implied by L{unit_string}, it will
        be applied to the returned numeric values.

        Resolution is approximately 0.1 seconds.

        If C{calendar = 'standard'} or C{'gregorian'} (indicating
        that the mixed Julian/Gregorian calendar is to be used), an
        exception will be raised if the 'datetime-like' object describes
        a date between 1582-10-5 and 1582-10-15.

        Works for scalars, sequences and numpy arrays.
        Returns a scalar if input is a scalar, else returns a numpy array.
        """
        isscalar = False
        try:
            date[0]
        except:
            isscalar = True
        if not isscalar:
            date = numpy.array(date)
            shape = date.shape
        if self.calendar in ['julian', 'standard', 'gregorian', 'proleptic_gregorian']:
            if isscalar:
                jdelta = JulianDayFromDate(date, self.calendar) - self._jd0
            else:
                jdelta = JulianDayFromDate(
                    date.flat, self.calendar) - self._jd0
        elif self.calendar in ['noleap', '365_day']:
            if isscalar:
                if date.month == 2 and date.day == 29:
                    raise ValueError(
                        'there is no leap day in the noleap calendar')
                jdelta = _NoLeapDayFromDate(date) - self._jd0
            else:
                jdelta = []
                for d in date.flat:
                    if d.month == 2 and d.day == 29:
                        raise ValueError(
                            'there is no leap day in the noleap calendar')
                    jdelta.append(_NoLeapDayFromDate(d) - self._jd0)
        elif self.calendar in ['all_leap', '366_day']:
            if isscalar:
                jdelta = _AllLeapFromDate(date) - self._jd0
            else:
                jdelta = [_AllLeapFromDate(d) - self._jd0 for d in date.flat]
        elif self.calendar == '360_day':
            if isscalar:
                if date.day > 30:
                    raise ValueError(
                        'there are only 30 days in every month with the 360_day calendar')
                jdelta = _360DayFromDate(date) - self._jd0
            else:
                jdelta = []
                for d in date.flat:
                    if d.day > 30:
                        raise ValueError(
                            'there are only 30 days in every month with the 360_day calendar')
                    jdelta.append(_360DayFromDate(d) - self._jd0)
        if not isscalar:
            jdelta = numpy.array(jdelta)
        # convert to desired units, subtract time zone offset.
        if self.units in microsec_units:
            jdelta = jdelta * 86400. * 1.e6  - self.tzoffset * 60. * 1.e6
        elif self.units in millisec_units:
            jdelta = jdelta * 86400. * 1.e3  - self.tzoffset * 60. * 1.e3
        elif self.units in sec_units:
            jdelta = jdelta * 86400. - self.tzoffset * 60.
        elif self.units in min_units:
            jdelta = jdelta * 1440. - self.tzoffset
        elif self.units in hr_units:
            jdelta = jdelta * 24. - self.tzoffset / 60.
        elif self.units in day_units:
            jdelta = jdelta - self.tzoffset / 1440.
        else:
            raise ValueError('unsupported time units')
        if isscalar:
            return jdelta
        else:
            return numpy.reshape(jdelta, shape)

    def num2date(self, time_value):
        """
        Return a 'datetime-like' object given a C{time_value} in units
        described by L{unit_string}, using L{calendar}.

        dates are in UTC with no offset, even if L{unit_string} contains
        a time zone offset from UTC.

        Resolution is approximately 0.1 seconds.

        Works for scalars, sequences and numpy arrays.
        Returns a scalar if input is a scalar, else returns a numpy array.

        The datetime instances returned by C{num2date} are 'real' python datetime
        objects if the date falls in the Gregorian calendar (i.e.
        C{calendar='proleptic_gregorian'}, or C{calendar = 'standard'/'gregorian'} and
        the date is after 1582-10-15). Otherwise, they are 'phony' datetime
        objects which are actually instances of netcdftime.datetime.  This is
        because the python datetime module cannot handle the weird dates in some
        calendars (such as C{'360_day'} and C{'all_leap'}) which
        do not exist in any real world calendar.
        """
        isscalar = False
        try:
            time_value[0]
        except:
            isscalar = True
        ismasked = False
        if hasattr(time_value, 'mask'):
            mask = time_value.mask
            ismasked = True
        if not isscalar:
            time_value = numpy.array(time_value, dtype='d')
            shape = time_value.shape
        # convert to desired units, add time zone offset.
        if self.units in microsec_units:
            jdelta = time_value / 86400000000. + self.tzoffset / 1440.
        elif self.units in millisec_units:
            jdelta = time_value / 86400000. + self.tzoffset / 1440.
        elif self.units in sec_units:
            jdelta = time_value / 86400. + self.tzoffset / 1440.
        elif self.units in min_units:
            jdelta = time_value / 1440. + self.tzoffset / 1440.
        elif self.units in hr_units:
            jdelta = time_value / 24. + self.tzoffset / 1440.
        elif self.units in day_units:
            jdelta = time_value + self.tzoffset / 1440.
        else:
            raise ValueError('unsupported time units')
        jd = self._jd0 + jdelta
        if self.calendar in ['julian', 'standard', 'gregorian', 'proleptic_gregorian']:
            if not isscalar:
                if ismasked:
                    date = []
                    for j, m in zip(jd.flat, mask.flat):
                        if not m:
                            date.append(DateFromJulianDay(j, self.calendar))
                        else:
                            date.append(None)
                else:
                    date = DateFromJulianDay(jd.flat, self.calendar)
            else:
                if ismasked and mask.item():
                    date = None
                else:
                    date = DateFromJulianDay(jd, self.calendar)
        elif self.calendar in ['noleap', '365_day']:
            if not isscalar:
                date = [_DateFromNoLeapDay(j) for j in jd.flat]
            else:
                date = _DateFromNoLeapDay(jd)
        elif self.calendar in ['all_leap', '366_day']:
            if not isscalar:
                date = [_DateFromAllLeap(j) for j in jd.flat]
            else:
                date = _DateFromAllLeap(jd)
        elif self.calendar == '360_day':
            if not isscalar:
                date = [_DateFrom360Day(j) for j in jd.flat]
            else:
                date = _DateFrom360Day(jd)
        if isscalar:
            return date
        else:
            return numpy.reshape(numpy.array(date), shape)


def _parse_timezone(tzstring):
    """Parses ISO 8601 time zone specs into tzinfo offsets

    Adapted from pyiso8601 (http://code.google.com/p/pyiso8601/)
    """
    if tzstring == "Z":
        return 0
    # This isn't strictly correct, but it's common to encounter dates without
    # timezones so I'll assume the default (which defaults to UTC).
    if tzstring is None:
        return 0
    m = TIMEZONE_REGEX.match(tzstring)
    prefix, hours, minutes = m.groups()
    hours, minutes = int(hours), int(minutes)
    if prefix == "-":
        hours = -hours
        minutes = -minutes
    return minutes + hours * 60.


def _parse_date(datestring):
    """Parses ISO 8601 dates into datetime objects

    The timezone is parsed from the date string, assuming UTC
    by default.

    Adapted from pyiso8601 (http://code.google.com/p/pyiso8601/)
    """
    if not isinstance(datestring, str) and not isinstance(datestring, unicode):
        raise ValueError("Expecting a string %r" % datestring)
    m = ISO8601_REGEX.match(datestring.strip())
    if not m:
        raise ValueError("Unable to parse date string %r" % datestring)
    groups = m.groupdict()
    tzoffset_mins = _parse_timezone(groups["timezone"])
    if groups["hour"] is None:
        groups["hour"] = 0
    if groups["minute"] is None:
        groups["minute"] = 0
    if groups["second"] is None:
        groups["second"] = 0
    # if groups["fraction"] is None:
    #    groups["fraction"] = 0
    # else:
    #    groups["fraction"] = int(float("0.%s" % groups["fraction"]) * 1e6)
    iyear = int(groups["year"])
    return iyear, int(groups["month"]), int(groups["day"]),\
        int(groups["hour"]), int(groups["minute"]), int(groups["second"]),\
        tzoffset_mins

def _check_index(indices, times, nctime, calendar, select):
    """Return True if the time indices given correspond to the given times,
    False otherwise.

    Parameters:

    indices : sequence of integers
    Positive integers indexing the time variable.

    times : sequence of times.
    Reference times.

    nctime : netCDF Variable object
    NetCDF time object.

    calendar : string
    Calendar of nctime.

    select : string
    Index selection method.
    """
    N = nctime.shape[0]
    if (indices < 0).any():
        return False

    if (indices >= N).any():
        return False

    try:
        t = nctime[indices]
        nctime = nctime
    # WORKAROUND TO CHANGES IN SLICING BEHAVIOUR in 1.1.2
    # this may be unacceptably slow...
    # if indices are unsorted, or there are duplicate
    # values in indices, read entire time variable into numpy
    # array so numpy slicing rules can be used.
    except IndexError:
        nctime = nctime[:]
        t = nctime[indices]
# if fancy indexing not available, fall back on this.
#   t=[]
#   for ind in indices:
#       t.append(nctime[ind])

    if select == 'exact':
        return numpy.all(t == times)

    elif select == 'before':
        ta = nctime[numpy.clip(indices + 1, 0, N - 1)]
        return numpy.all(t <= times) and numpy.all(ta > times)

    elif select == 'after':
        tb = nctime[numpy.clip(indices - 1, 0, N - 1)]
        return numpy.all(t >= times) and numpy.all(tb < times)

    elif select == 'nearest':
        ta = nctime[numpy.clip(indices + 1, 0, N - 1)]
        tb = nctime[numpy.clip(indices - 1, 0, N - 1)]
        delta_after = ta - t
        delta_before = t - tb
        delta_check = numpy.abs(times - t)
        return numpy.all(delta_check <= delta_after) and numpy.all(delta_check <= delta_before)


def date2index(dates, nctime, calendar=None, select='exact'):
    """
    date2index(dates, nctime, calendar=None, select='exact')

    Return indices of a netCDF time variable corresponding to the given dates.

    @param dates: A datetime object or a sequence of datetime objects.
    The datetime objects should not include a time-zone offset.

    @param nctime: A netCDF time variable object. The nctime object must have a
    C{units} attribute. The entries are assumed to be stored in increasing
    order.

    @param calendar: Describes the calendar used in the time calculation.
    Valid calendars C{'standard', 'gregorian', 'proleptic_gregorian'
    'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'}.
    Default is C{'standard'}, which is a mixed Julian/Gregorian calendar
    If C{calendar} is None, its value is given by C{nctime.calendar} or
    C{standard} if no such attribute exists.

    @param select: C{'exact', 'before', 'after', 'nearest'}
    The index selection method. C{exact} will return the indices perfectly
    matching the dates given. C{before} and C{after} will return the indices
    corresponding to the dates just before or just after the given dates if
    an exact match cannot be found. C{nearest} will return the indices that
    correpond to the closest dates.
    """
    try:
        nctime.units
    except AttributeError:
        raise AttributeError("netcdf time variable is missing a 'units' attribute")
    # Setting the calendar.
    if calendar == None:
        calendar = getattr(nctime, 'calendar', 'standard')
    cdftime = utime(nctime.units,calendar=calendar)
    times = cdftime.date2num(dates)
    return time2index(times, nctime, calendar=calendar, select=select)


def time2index(times, nctime, calendar=None, select='exact'):
    """
    time2index(times, nctime, calendar=None, select='exact')

    Return indices of a netCDF time variable corresponding to the given times.

    @param times: A numeric time or a sequence of numeric times.

    @param nctime: A netCDF time variable object. The nctime object must have a
    C{units} attribute. The entries are assumed to be stored in increasing
    order.

    @param calendar: Describes the calendar used in the time calculation.
    Valid calendars C{'standard', 'gregorian', 'proleptic_gregorian'
    'noleap', '365_day', '360_day', 'julian', 'all_leap', '366_day'}.
    Default is C{'standard'}, which is a mixed Julian/Gregorian calendar
    If C{calendar} is None, its value is given by C{nctime.calendar} or
    C{standard} if no such attribute exists.

    @param select: C{'exact', 'before', 'after', 'nearest'}
    The index selection method. C{exact} will return the indices perfectly
    matching the times given. C{before} and C{after} will return the indices
    corresponding to the times just before or just after the given times if
    an exact match cannot be found. C{nearest} will return the indices that
    correpond to the closest times.
    """
    try:
        nctime.units
    except AttributeError:
        raise AttributeError("netcdf time variable is missing a 'units' attribute")
    # Setting the calendar.
    if calendar == None:
        calendar = getattr(nctime, 'calendar', 'standard')

    num = numpy.atleast_1d(times)
    N = len(nctime)

    # Trying to infer the correct index from the starting time and the stride.
    # This assumes that the times are increasing uniformly.
    if len(nctime) >= 2:
        t0, t1 = nctime[:2]
        dt = t1 - t0
    else:
        t0 = nctime[0]
        dt = 1.
    if select in ['exact', 'before']:
        index = numpy.array((num - t0) / dt, int)
    elif select == 'after':
        index = numpy.array(numpy.ceil((num - t0) / dt), int)
    else:
        index = numpy.array(numpy.around((num - t0) / dt), int)

    # Checking that the index really corresponds to the given time.
    # If the times do not correspond, then it means that the times
    # are not increasing uniformly and we try the bisection method.
    if not _check_index(index, times, nctime, calendar, select):

        # Use the bisection method. Assumes nctime is ordered.
        import bisect
        index = numpy.array([bisect.bisect_right(nctime, n) for n in num], int)
        before = index == 0

        index = numpy.array([bisect.bisect_left(nctime, n) for n in num], int)
        after = index == N

        if select in ['before', 'exact'] and numpy.any(before):
            raise ValueError(
                'Some of the times given are before the first time in `nctime`.')

        if select in ['after', 'exact'] and numpy.any(after):
            raise ValueError(
                'Some of the times given are after the last time in `nctime`.')

        # Find the times for which the match is not perfect.
        # Use list comprehension instead of the simpler `nctime[index]` since
        # not all time objects support numpy integer indexing (eg dap).
        index[after] = N - 1
        ncnum = numpy.squeeze([nctime[i] for i in index])
        mismatch = numpy.nonzero(ncnum != num)[0]

        if select == 'exact':
            if len(mismatch) > 0:
                raise ValueError(
                    'Some of the times specified were not found in the `nctime` variable.')

        elif select == 'before':
            index[after] = N
            index[mismatch] -= 1

        elif select == 'after':
            pass

        elif select == 'nearest':
            nearest_to_left = num[mismatch] < numpy.array(
                [float(nctime[i - 1]) + float(nctime[i]) for i in index[mismatch]]) / 2.
            index[mismatch] = index[mismatch] - 1 * nearest_to_left

        else:
            raise ValueError(
                "%s is not an option for the `select` argument." % select)

        # Correct for indices equal to -1
        index[before] = 0

    # convert numpy scalars or single element arrays to python ints.
    return _toscalar(index)


def _toscalar(a):
    if a.shape in [(), (1,)]:
        return a.item()
    else:
        return a