/usr/lib/python3/dist-packages/openturns/analytical.py is in python3-openturns 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
Analytical uncertainty propagation algorithms.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_analytical', [dirname(__file__)])
except ImportError:
import _analytical
return _analytical
if fp is not None:
try:
_mod = imp.load_module('_analytical', fp, pathname, description)
finally:
fp.close()
return _mod
_analytical = swig_import_helper()
del swig_import_helper
else:
import _analytical
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _analytical.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self): return _analytical.SwigPyIterator_value(self)
def incr(self, n=1): return _analytical.SwigPyIterator_incr(self, n)
def decr(self, n=1): return _analytical.SwigPyIterator_decr(self, n)
def distance(self, *args): return _analytical.SwigPyIterator_distance(self, *args)
def equal(self, *args): return _analytical.SwigPyIterator_equal(self, *args)
def copy(self): return _analytical.SwigPyIterator_copy(self)
def next(self): return _analytical.SwigPyIterator_next(self)
def __next__(self): return _analytical.SwigPyIterator___next__(self)
def previous(self): return _analytical.SwigPyIterator_previous(self)
def advance(self, *args): return _analytical.SwigPyIterator_advance(self, *args)
def __eq__(self, *args): return _analytical.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args): return _analytical.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args): return _analytical.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args): return _analytical.SwigPyIterator___isub__(self, *args)
def __add__(self, *args): return _analytical.SwigPyIterator___add__(self, *args)
def __sub__(self, *args): return _analytical.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _analytical.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
GCC_VERSION = _analytical.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
import openturns.metamodel
import openturns.weightedexperiment
import openturns.orthogonalbasis
import openturns.randomvector
import openturns.transformation
class AnalyticalResult(openturns.common.PersistentObject):
"""
Analytical result.
Available constructors:
AnalyticalResult()
AnalyticalResult(*designPoint, limitStateVariable, isInFailureSpace*)
Notes
-----
Structure created by the method run() of a :class:`~openturns.Analytical`
and obtained thanks to the method getAnalyticalResult().
Parameters
----------
designPoint : float sequence
Design point in the standard space resulting from the optimization
algorithm.
limitStateVariable : :class:`~openturns.Event`
Event of which the probability is calculated.
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
"""
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, AnalyticalResult, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, AnalyticalResult, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.AnalyticalResult_getClassName(self)
ELLIPTICAL = _analytical.AnalyticalResult_ELLIPTICAL
CLASSICAL = _analytical.AnalyticalResult_CLASSICAL
PHYSICAL = _analytical.AnalyticalResult_PHYSICAL
def getStandardSpaceDesignPoint(self):
"""
Accessor to the design point in the standard space.
Returns
-------
designPoint : float sequence
Design point in the standard space resulting from the optimization
algorithm.
"""
return _analytical.AnalyticalResult_getStandardSpaceDesignPoint(self)
def setStandardSpaceDesignPoint(self, *args):
"""
Accessor to the design point in the standard space.
Returns
-------
designPoint : float sequence
Design point in the standard space resulting from the optimization
algorithm.
"""
return _analytical.AnalyticalResult_setStandardSpaceDesignPoint(self, *args)
def getPhysicalSpaceDesignPoint(self):
"""
Accessor to the design point in the physical space.
Returns
-------
designPoint : float sequence
Design point in the physical space resulting from the optimization
algorithm.
"""
return _analytical.AnalyticalResult_getPhysicalSpaceDesignPoint(self)
def getLimitStateVariable(self):
"""
Accessor to the event of which the probability is calculated.
Returns
-------
limitStateVariable : :class:`~openturns.Event`
Event of which the probability is calculated.
"""
return _analytical.AnalyticalResult_getLimitStateVariable(self)
def getIsStandardPointOriginInFailureSpace(self):
"""
Accessor to know if the standard point origin is in the failure space.
Returns
-------
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
"""
return _analytical.AnalyticalResult_getIsStandardPointOriginInFailureSpace(self)
def setIsStandardPointOriginInFailureSpace(self, *args):
"""
Accessor to specify if the standard point origin is in the failure space.
Parameters
----------
isInFailureSpace : bool
Indicates whether the origin of the standard space is in the failure space.
"""
return _analytical.AnalyticalResult_setIsStandardPointOriginInFailureSpace(self, *args)
def getMeanPointInStandardEventDomain(self):
"""
Accessor to the mean point in the standard event domain.
Returns
-------
meanPoint : float sequence
Mean point of the standard space distribution restricted to the event
domain:
:math:`\\displaystyle \\frac{1}{E_1(-\\beta)}\\int_{\\beta}^{\\infty} u_1 p_1(u_1)du_1`
where :math:`E_1` is the spheric univariate distribution of the standard
space and :math:`\\beta` the reliability index.
"""
return _analytical.AnalyticalResult_getMeanPointInStandardEventDomain(self)
def setMeanPointInStandardEventDomain(self, *args):
"""
Accessor to the mean point in the standard event domain.
Parameters
----------
meanPoint : float sequence
Mean point of the standard space distribution restricted to the event
domain:
:math:`\\displaystyle \\frac{1}{E_1(-\\beta)}\\int_{\\beta}^{\\infty} u_1 p_1(u_1)du_1`
where :math:`E_1` is the spheric univariate distribution of the standard
space and :math:`\\beta` the reliability index.
"""
return _analytical.AnalyticalResult_setMeanPointInStandardEventDomain(self, *args)
def getImportanceFactors(self, *args):
"""
Accessor to the importance factors.
Parameters
----------
type : int, optional
By default, the importance factors are evaluated as the square of the
co-factors of the design point in the U-space.
When `AnalyticalResult.CLASSICAL` they are evaluated as the square of the co-factors
of the design point in the Y-space.
When `AnalyticalResult.PHYSICAL`, the importance factors are evaluated
as the square of the physical sensitivities.
Notes
-----
If the importance factors are evaluated as the square of the
co-factors of the design point in the U-space:
.. math::
\\alpha_i^2 = \\frac{(u_i^*)^2}
{\\beta_{HL}^2}
If the importance factors are evaluated as the square of the co-factors of the
design point in the Y-space:
.. math::
\\alpha_i^2 = \\frac{(y_i^*)^2}
{\\|\\vect{y}^*\\|^2}
where
.. math::
Y^* = \\left(
\\begin{array}{c}
E^{-1}\\circ F_1(X_1^*) \\\\
E^{-1}\\circ F_2(X_2^*) \\\\
\\vdots \\\\
E^{-1}\\circ F_n(X_n^*)
\\end{array}
\\right)
with :math:`\\vect{X}^*` is the design point in the physical space and E
the univariate standard CDF of the elliptical space. In the case where the
input distribution of :math:`\\vect{X}` has an elliptical copula
:math:`C_E`, then :math:`E` has the same type as :math:`C_E`.
In the case where the input distribution of :math:`\\vect{X}` has a copula
:math:`C` which is not elliptical, then :math:`E=\\Phi` where :math:`\\Phi`
is the CDF of the standard normal.
If the importance factors are evaluated as the square of the physical sensitivities:
.. math::
\\alpha_i^2 = \\displaystyle \\frac{s_i^2}{{\\|s\\|}^2}
where
.. math::
s_i = \\displaystyle \\frac{\\partial \\beta}{\\partial x_i} (x^*) = \\sum_{j=1}^n \\frac{\\partial \\beta}{\\partial u_i} \\frac{\\partial u_j}{\\partial x_i} (x^*)
Returns
-------
factors : float sequence with description for each component
List of the importance factors.
"""
return _analytical.AnalyticalResult_getImportanceFactors(self, *args)
def drawImportanceFactors(self, *args):
"""
Draw the importance factors.
Parameters
----------
type : int, optional
See :meth:`getImportanceFactors`
Returns
-------
graph : :class:`~openturns.Graph`
Pie of the importance factors of the probabilistic variables.
"""
return _analytical.AnalyticalResult_drawImportanceFactors(self, *args)
def getHasoferReliabilityIndex(self):
"""
Accessor to the Hasofer Reliability Index.
Returns
-------
index : float
Hasofer Reliability Index.
"""
return _analytical.AnalyticalResult_getHasoferReliabilityIndex(self)
def getHasoferReliabilityIndexSensitivity(self):
"""
Accessor to the sensitivities of the Hasofer Reliability Index.
Returns
-------
sensitivity : :class:`~openturns.Sensitivity`
Sensitivities of the Hasofer Reliability Index to the parameters of the
probabilistic input vector (marginals and dependence structure).
"""
return _analytical.AnalyticalResult_getHasoferReliabilityIndexSensitivity(self)
def getOptimizationResult(self):
"""
Accessor to the result of the optimization problem.
Returns
-------
result : :class:`~openturns.NearestPointAlgorithmImplementationResult`
Contains the design point in the standard space and information concerning
the convergence of the optimization algorithm.
"""
return _analytical.AnalyticalResult_getOptimizationResult(self)
def setOptimizationResult(self, *args):
"""
Accessor to the result of the optimization problem.
Returns
-------
result : :class:`~openturns.NearestPointAlgorithmImplementationResult`
Contains the design point in the standard space and information concerning
the convergence of the optimization algorithm.
"""
return _analytical.AnalyticalResult_setOptimizationResult(self, *args)
def drawHasoferReliabilityIndexSensitivity(self, *args):
"""
Draw the sensitivity of the Hasofer Reliability Index.
Parameters
----------
width : float, optional
Value to calculate the shift position of the :class:`~openturns.BarPlot`.
By default it is 1.0.
Returns
-------
graphCollection : list of two :class:`~openturns.Graph` containing a barplot
The first graph drawing the sensitivity of the Hasofer Reliability Index to
the parameters of the marginals of the probabilistic input vector.
The second graph drawing the sensitivity of the Hasofer Reliability Index
to the parameters of the dependence structure of the probabilistic input
vector.
"""
return _analytical.AnalyticalResult_drawHasoferReliabilityIndexSensitivity(self, *args)
def __repr__(self): return _analytical.AnalyticalResult___repr__(self)
def __init__(self, *args):
this = _analytical.new_AnalyticalResult(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_AnalyticalResult
__del__ = lambda self : None;
AnalyticalResult_swigregister = _analytical.AnalyticalResult_swigregister
AnalyticalResult_swigregister(AnalyticalResult)
class Analytical(openturns.common.PersistentObject):
"""
Base class to find the design point.
Available constructors:
Analytical(*nearestPointAlgorithm, event, physicalStartingPoint*)
Parameters
----------
nearestPointAlgorithm : :class:`~openturns.NearestPointAlgorithm`
Optimization algorithm used to research the design point.
event : :class:`~openturns.Event`
Failure event.
physicalStartingPoint : float sequence
Starting point of the optimization algorithm, declared in the physical
space.
Notes
-----
An event is defined as follows:
:math:`\\cD_f = \\{\\vect{X} \\in \\Rset^n \\, / \\, g(\\vect{X},\\vect{d}) \\le 0\\}`
where :math:`\\vect{X}` denotes a random input vector, representing the sources
of uncertainties, :math:`\\vect{d}` is a determinist vector, representing the
fixed variables and :math:`g(\\vect{X},\\vect{d})` is the limit state function of
the model.
The probability content of the event :math:`\\cD_f`:
.. math::
P_f = \\int_{g(\\vect{X},\\vect{d})\\le 0}f_\\vect{X}(\\vect{x})d\\vect{x}
may be evaluated with the :class:`~openturns.FORM` or :class:`~openturns.SORM`
methods.
In order to evaluate an approximation of :math:`P_f`, these analytical methods
uses the Nataf isoprobabilistic transformation which maps the probabilistic
model in terms of :math:`\\vect{X}` onto an equivalent model in terms of
:math:`n` independant standard normal random :math:`\\vect{U}`. In that new
:math:`\\vect{u}`-space, the event has the new expression defined from the
transformed limit state function of the model
:math:`G : \\cD_f = \\{\\vect{U} \\in \\Rset^n \\, / \\, G(\\vect{U}\\,,\\,\\vect{d}) \\le 0\\}`
and its boundary: :math:`\\{\\vect{U} \\in \\Rset^n \\, / \\,G(\\vect{U}\\,,\\,\\vect{d}) = 0\\}`.
These analytical methods rely on the assumption that most of the contribution
to :math:`P_f` comes from points located in the vicinity of a particular point
:math:`P^*`, the **design point**, defined in the :math:`\\vect{u}`-space as the
point located on the limit state surface and of maximal likelihood.
Given the probabilistic caracteristics of the :math:`\\vect{u}`-space,
:math:`P^*` has a geometrical interpretation: it is the point located on the
event boundary and at minimal distance from the center of the
:math:`\\vect{u}`-space. Thus, the design point :math:`P^*` is the result of a
constrained optimization problem.
See also
--------
FORM, SORM, StrongMaximumTest
Examples
--------
>>> import openturns as ot
>>> myFunction = ot.NumericalMathFunction(['E', 'F', 'L', 'I'], ['d'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50., 1., 10., 5.], [1.]*4, ot.IdentityMatrix(4))
>>> vect = ot.RandomVector(myDistribution)
>>> output = ot.RandomVector(myFunction, vect)
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # We create a NearestPoint algorithm
>>> myCobyla = ot.Cobyla()
>>> myAlgo = ot.Analytical(myCobyla, myEvent, [50., 1., 10., 5.])
"""
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Analytical, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Analytical, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.Analytical_getClassName(self)
def getPhysicalStartingPoint(self):
"""
Accessor to the starting point of the optimization algorithm.
Returns
-------
point : float sequence
Starting point of the optimization algorithm, declared in the physical
space.
"""
return _analytical.Analytical_getPhysicalStartingPoint(self)
def setPhysicalStartingPoint(self, *args):
"""
Accessor to the starting point of the optimization algorithm.
Parameters
----------
point : float sequence
Starting point of the optimization algorithm, declared in the physical
space.
"""
return _analytical.Analytical_setPhysicalStartingPoint(self, *args)
def getEvent(self):
"""
Accessor to the event of which the probability is calculated.
Returns
-------
event : :class:`~openturns.Event`
Event of which the probability is calculated.
"""
return _analytical.Analytical_getEvent(self)
def setEvent(self, *args):
"""
Accessor to the event of which the probability is calculated.
Parameters
----------
event : :class:`~openturns.Event`
Event of which the probability is calculated.
"""
return _analytical.Analytical_setEvent(self, *args)
def getNearestPointAlgorithm(self):
"""
Accessor to the optimization algorithm used to find the design point.
Returns
-------
algorithm : :class:`~openturns.NearestPointAlgorithm`
Optimization algorithm used to research the design point.
"""
return _analytical.Analytical_getNearestPointAlgorithm(self)
def setNearestPointAlgorithm(self, *args):
"""
Accessor to the optimization algorithm used to find the design point.
Parameters
----------
algorithm : :class:`~openturns.NearestPointAlgorithm`
Optimization algorithm used to research the design point.
"""
return _analytical.Analytical_setNearestPointAlgorithm(self, *args)
def getAnalyticalResult(self):
"""
Accessor to the result.
Returns
-------
result : :class:`~openturns.AnalyticalResult`
Result structure which contains the results of the optimisation problem.
"""
return _analytical.Analytical_getAnalyticalResult(self)
def __repr__(self): return _analytical.Analytical___repr__(self)
def run(self):
"""
Perform the research of the design point.
Notes
-----
Performs the research of the design point and creates a
:class:`~openturns.AnalyticalResult`, the structure result which is
accessible with the method getAnalyticalResult.
See also
--------
getAnalyticalResult
"""
return _analytical.Analytical_run(self)
def __init__(self, *args):
this = _analytical.new_Analytical(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_Analytical
__del__ = lambda self : None;
Analytical_swigregister = _analytical.Analytical_swigregister
Analytical_swigregister(Analytical)
class FORMResult(AnalyticalResult):
__swig_setmethods__ = {}
for _s in [AnalyticalResult]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FORMResult, name, value)
__swig_getmethods__ = {}
for _s in [AnalyticalResult]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, FORMResult, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.FORMResult_getClassName(self)
def getEventProbability(self): return _analytical.FORMResult_getEventProbability(self)
def getGeneralisedReliabilityIndex(self): return _analytical.FORMResult_getGeneralisedReliabilityIndex(self)
def getEventProbabilitySensitivity(self): return _analytical.FORMResult_getEventProbabilitySensitivity(self)
def drawEventProbabilitySensitivity(self, *args): return _analytical.FORMResult_drawEventProbabilitySensitivity(self, *args)
def __repr__(self): return _analytical.FORMResult___repr__(self)
def __init__(self, *args):
this = _analytical.new_FORMResult(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_FORMResult
__del__ = lambda self : None;
FORMResult_swigregister = _analytical.FORMResult_swigregister
FORMResult_swigregister(FORMResult)
class FORM(Analytical):
__swig_setmethods__ = {}
for _s in [Analytical]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, FORM, name, value)
__swig_getmethods__ = {}
for _s in [Analytical]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, FORM, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.FORM_getClassName(self)
def getResult(self): return _analytical.FORM_getResult(self)
def setResult(self, *args): return _analytical.FORM_setResult(self, *args)
def __repr__(self): return _analytical.FORM___repr__(self)
def run(self):
"""
Perform the research of the design point.
Notes
-----
Performs the research of the design point and creates a
:class:`~openturns.AnalyticalResult`, the structure result which is
accessible with the method getAnalyticalResult.
See also
--------
getAnalyticalResult
"""
return _analytical.FORM_run(self)
def __init__(self, *args):
this = _analytical.new_FORM(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_FORM
__del__ = lambda self : None;
FORM_swigregister = _analytical.FORM_swigregister
FORM_swigregister(FORM)
class SORMResult(AnalyticalResult):
__swig_setmethods__ = {}
for _s in [AnalyticalResult]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SORMResult, name, value)
__swig_getmethods__ = {}
for _s in [AnalyticalResult]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, SORMResult, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.SORMResult_getClassName(self)
def getEventProbabilityBreitung(self): return _analytical.SORMResult_getEventProbabilityBreitung(self)
def getEventProbabilityHohenBichler(self): return _analytical.SORMResult_getEventProbabilityHohenBichler(self)
def getEventProbabilityTvedt(self): return _analytical.SORMResult_getEventProbabilityTvedt(self)
def getGeneralisedReliabilityIndexBreitung(self): return _analytical.SORMResult_getGeneralisedReliabilityIndexBreitung(self)
def getGeneralisedReliabilityIndexHohenBichler(self): return _analytical.SORMResult_getGeneralisedReliabilityIndexHohenBichler(self)
def getGeneralisedReliabilityIndexTvedt(self): return _analytical.SORMResult_getGeneralisedReliabilityIndexTvedt(self)
def getSortedCurvatures(self): return _analytical.SORMResult_getSortedCurvatures(self)
def __repr__(self): return _analytical.SORMResult___repr__(self)
def __str__(self, offset=""): return _analytical.SORMResult___str__(self, offset)
def __init__(self, *args):
this = _analytical.new_SORMResult(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_SORMResult
__del__ = lambda self : None;
SORMResult_swigregister = _analytical.SORMResult_swigregister
SORMResult_swigregister(SORMResult)
class SORM(Analytical):
__swig_setmethods__ = {}
for _s in [Analytical]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, SORM, name, value)
__swig_getmethods__ = {}
for _s in [Analytical]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, SORM, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.SORM_getClassName(self)
def getResult(self): return _analytical.SORM_getResult(self)
def setResult(self, *args): return _analytical.SORM_setResult(self, *args)
def __repr__(self): return _analytical.SORM___repr__(self)
def run(self):
"""
Perform the research of the design point.
Notes
-----
Performs the research of the design point and creates a
:class:`~openturns.AnalyticalResult`, the structure result which is
accessible with the method getAnalyticalResult.
See also
--------
getAnalyticalResult
"""
return _analytical.SORM_run(self)
def __init__(self, *args):
this = _analytical.new_SORM(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_SORM
__del__ = lambda self : None;
SORM_swigregister = _analytical.SORM_swigregister
SORM_swigregister(SORM)
class StrongMaximumTest(openturns.common.PersistentObject):
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, StrongMaximumTest, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, StrongMaximumTest, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _analytical.StrongMaximumTest_getClassName(self)
def getStandardSpaceDesignPoint(self): return _analytical.StrongMaximumTest_getStandardSpaceDesignPoint(self)
def getEvent(self): return _analytical.StrongMaximumTest_getEvent(self)
def getImportanceLevel(self): return _analytical.StrongMaximumTest_getImportanceLevel(self)
def getAccuracyLevel(self): return _analytical.StrongMaximumTest_getAccuracyLevel(self)
def getConfidenceLevel(self): return _analytical.StrongMaximumTest_getConfidenceLevel(self)
def getDesignPointVicinity(self): return _analytical.StrongMaximumTest_getDesignPointVicinity(self)
def getPointNumber(self): return _analytical.StrongMaximumTest_getPointNumber(self)
def getDeltaEpsilon(self): return _analytical.StrongMaximumTest_getDeltaEpsilon(self)
def run(self): return _analytical.StrongMaximumTest_run(self)
def getNearDesignPointVerifyingEventPoints(self): return _analytical.StrongMaximumTest_getNearDesignPointVerifyingEventPoints(self)
def getFarDesignPointVerifyingEventPoints(self): return _analytical.StrongMaximumTest_getFarDesignPointVerifyingEventPoints(self)
def getNearDesignPointViolatingEventPoints(self): return _analytical.StrongMaximumTest_getNearDesignPointViolatingEventPoints(self)
def getFarDesignPointViolatingEventPoints(self): return _analytical.StrongMaximumTest_getFarDesignPointViolatingEventPoints(self)
def getNearDesignPointVerifyingEventValues(self): return _analytical.StrongMaximumTest_getNearDesignPointVerifyingEventValues(self)
def getFarDesignPointVerifyingEventValues(self): return _analytical.StrongMaximumTest_getFarDesignPointVerifyingEventValues(self)
def getNearDesignPointViolatingEventValues(self): return _analytical.StrongMaximumTest_getNearDesignPointViolatingEventValues(self)
def getFarDesignPointViolatingEventValues(self): return _analytical.StrongMaximumTest_getFarDesignPointViolatingEventValues(self)
def __repr__(self): return _analytical.StrongMaximumTest___repr__(self)
def __init__(self, *args):
this = _analytical.new_StrongMaximumTest(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _analytical.delete_StrongMaximumTest
__del__ = lambda self : None;
StrongMaximumTest_swigregister = _analytical.StrongMaximumTest_swigregister
StrongMaximumTest_swigregister(StrongMaximumTest)
# This file is compatible with both classic and new-style classes.
|