/usr/lib/python3/dist-packages/openturns/geom.py is in python3-openturns 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
Geometrical classes.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_geom', [dirname(__file__)])
except ImportError:
import _geom
return _geom
if fp is not None:
try:
_mod = imp.load_module('_geom', fp, pathname, description)
finally:
fp.close()
return _mod
_geom = swig_import_helper()
del swig_import_helper
else:
import _geom
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _geom.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self): return _geom.SwigPyIterator_value(self)
def incr(self, n=1): return _geom.SwigPyIterator_incr(self, n)
def decr(self, n=1): return _geom.SwigPyIterator_decr(self, n)
def distance(self, *args): return _geom.SwigPyIterator_distance(self, *args)
def equal(self, *args): return _geom.SwigPyIterator_equal(self, *args)
def copy(self): return _geom.SwigPyIterator_copy(self)
def next(self): return _geom.SwigPyIterator_next(self)
def __next__(self): return _geom.SwigPyIterator___next__(self)
def previous(self): return _geom.SwigPyIterator_previous(self)
def advance(self, *args): return _geom.SwigPyIterator_advance(self, *args)
def __eq__(self, *args): return _geom.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args): return _geom.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args): return _geom.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args): return _geom.SwigPyIterator___isub__(self, *args)
def __add__(self, *args): return _geom.SwigPyIterator___add__(self, *args)
def __sub__(self, *args): return _geom.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _geom.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
GCC_VERSION = _geom.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.graph
class DomainImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
__swig_setmethods__ = {}
for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, DomainImplementationTypedInterfaceObject, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, DomainImplementationTypedInterfaceObject, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _geom.new_DomainImplementationTypedInterfaceObject(*args)
try: self.this.append(this)
except: self.this = this
def getImplementation(self, *args):
"""
Accessor to the underlying implementation.
Returns
-------
impl : Implementation
The implementation class.
"""
return _geom.DomainImplementationTypedInterfaceObject_getImplementation(self, *args)
def setName(self, *args):
"""
Accessor to the object's name.
Parameters
----------
name : string
The name of the object.
"""
return _geom.DomainImplementationTypedInterfaceObject_setName(self, *args)
def getName(self):
"""
Accessor to the object's name.
Returns
-------
name : string
The name of the object.
"""
return _geom.DomainImplementationTypedInterfaceObject_getName(self)
def __eq__(self, *args): return _geom.DomainImplementationTypedInterfaceObject___eq__(self, *args)
__swig_destroy__ = _geom.delete_DomainImplementationTypedInterfaceObject
__del__ = lambda self : None;
DomainImplementationTypedInterfaceObject_swigregister = _geom.DomainImplementationTypedInterfaceObject_swigregister
DomainImplementationTypedInterfaceObject_swigregister(DomainImplementationTypedInterfaceObject)
class Domain(DomainImplementationTypedInterfaceObject):
"""
Domain.
Available constructors:
Domain(*lowerBound, upperBound*)
Parameters
----------
lowerBound, upperBound : float sequences of dimension *dim*
Define a finite :class:`interval <openturns.Interval>`
:math:`[lowerBound_0, upperBound_0]\\times \\dots \\times [lowerBound_{dim-1}, upperBound_{dim-1}]`.
It is allowed to have :math:`lowerBound_i \\geq upperBound_i` for some
:math:`i`: it simply defines an empty interval.
By default, an empty interval is created.
Notes
-----
A Domain object can be created through its derived classes:
- :class:`~openturns.Mesh`
- :class:`~openturns.RegularGrid`
- :class:`~openturns.Interval`
- :class:`~openturns.LevelSet`
Examples
--------
>>> import openturns as ot
>>> # Create the interval [a, b]
>>> a = 1
>>> b = 3
>>> print(ot.Domain([a], [b]))
[1, 3]
>>> print(ot.Domain(ot.Interval(a, b)))
[1, 3]
"""
__swig_setmethods__ = {}
for _s in [DomainImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Domain, name, value)
__swig_getmethods__ = {}
for _s in [DomainImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Domain, name)
__repr__ = _swig_repr
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _geom.Domain_getClassName(self)
def isEmpty(self):
"""
Test whether the domain is empty or not.
Returns
-------
isInside : Bool
*True* if the interior of the geometric domain is empty.
"""
return _geom.Domain_isEmpty(self)
def isNumericallyEmpty(self):
"""
Check if the domain is numerically empty.
Returns
-------
isInside : Bool
Flag telling whether the domain is numerically empty, i.e. if its numerical
volume is inferior or equal to :math:`\\epsilon` (defined in the
:class:`~openturns.ResourceMap`:
:math:`\\epsilon` = DomainImplementation-SmallVolume).
Examples
--------
>>> import openturns as ot
>>> # Get the value of epsilon
>>> print(ot.ResourceMap_GetAsNumericalScalar('DomainImplementation-SmallVolume'))
1e-12
"""
return _geom.Domain_isNumericallyEmpty(self)
def contains(self, *args):
"""
Check if the given point is inside of the domain.
Parameters
----------
point : float sequence
Point with the same dimension as the current domain's dimension.
Returns
-------
isInside : Bool
Flag telling whether the given point is inside of the domain.
"""
return _geom.Domain_contains(self, *args)
def numericallyContains(self, *args):
"""
Check if the given point is inside of the discretization of the domain.
Parameters
----------
point : float sequence
Point with the same dimension as the current domain's dimension.
Returns
-------
isInside : Bool
Flag telling whether the point is inside the discretized domain associated
to the domain. For now, by default, the discretized domain is equal to the
geometrical domain.
"""
return _geom.Domain_numericallyContains(self, *args)
def getNumericalVolume(self):
"""
Get the volume of the domain.
Returns
-------
volume : float
Volume of the underlying mesh which is the discretization of the domain.
For now, by default, it is equal to the geometrical volume.
"""
return _geom.Domain_getNumericalVolume(self)
def getVolume(self):
"""
Get the geometric volume of the domain.
Returns
-------
volume : float
Geometrical volume of the domain.
"""
return _geom.Domain_getVolume(self)
def getDimension(self):
"""
Get the dimension of the domain.
Returns
-------
dim : int
Dimension of the domain.
"""
return _geom.Domain_getDimension(self)
def __init__(self, *args):
this = _geom.new_Domain(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _geom.delete_Domain
__del__ = lambda self : None;
Domain_swigregister = _geom.Domain_swigregister
Domain_swigregister(Domain)
class Mesh(openturns.typ.DomainImplementation):
"""
Mesh.
Available constructors:
Mesh(*dim=1*)
Mesh(*vertices, simplices*)
Parameters
----------
dim : int, :math:`dim \\geq 0`
The dimension of the vertices. By default, it creates only one
vertex of dimension :math:`dim` with components equal to 0.
vertices : 2D float sequence
Vertices' coordinates in :math:`\\Rset^{dim}`.
simplices : 2D int sequence
List of simplices defining the topology of the mesh. The simplex
:math:`[i_1, \\dots, i_{dim+1}]` relies the vertices of index
:math:`(i_1, \\dots, i_{dim+1})` in :math:`\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
See also
--------
RegularGrid
Examples
--------
>>> import openturns as ot
>>> # Define the vertices of the mesh
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> # Define the simplices of the mesh
>>> simplices = ot.IndicesCollection([[0, 1, 2], [1, 2, 3]])
>>> # Create the mesh of dimension 2
>>> mesh2d = ot.Mesh(vertices, simplices)
"""
__swig_setmethods__ = {}
for _s in [openturns.typ.DomainImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Mesh, name, value)
__swig_getmethods__ = {}
for _s in [openturns.typ.DomainImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Mesh, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _geom.Mesh_getClassName(self)
def contains(self, *args):
"""
Check if the given point is inside of the domain.
Parameters
----------
point : float sequence
Point with the same dimension as the current domain's dimension.
Returns
-------
isInside : Bool
Flag telling whether the given point is inside of the domain.
"""
return _geom.Mesh_contains(self, *args)
def getDescription(self):
"""
Get the description of the vertices.
Returns
-------
description : string
Description of the vertices.
Examples
--------
>>> import openturns as ot
>>> mesh = ot.Mesh()
>>> vertices = ot.NumericalSample([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]])
>>> vertices.setDescription(['X', 'Y'])
>>> mesh.setVertices(vertices)
>>> print(mesh.getDescription())
[X,Y]
"""
return _geom.Mesh_getDescription(self)
def getVerticesNumber(self):
"""
Get the number of vertices of the mesh.
Returns
-------
number : int
Number of vertices of the mesh.
"""
return _geom.Mesh_getVerticesNumber(self)
def getSimplicesNumber(self):
"""
Get the number of simplices of the mesh.
Returns
-------
number : int
Number of simplices of the mesh.
"""
return _geom.Mesh_getSimplicesNumber(self)
def getNearestVertexIndex(self, *args):
"""
Get the index of the nearest vertex of a given point.
Parameters
----------
point : float sequence
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
Returns
-------
index : int
Index of the simplex the nearest of *point* according to the Euclidean
norm.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> point = [0.9, 0.4]
>>> print(mesh2d.getNearestVertexIndex(point))
1
"""
return _geom.Mesh_getNearestVertexIndex(self, *args)
def getNearestVertex(self, *args):
"""
Get the nearest vertex of a given point.
Parameters
----------
point : float sequence
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
Returns
-------
vertex : float sequence
Coordinates of the nearest vertex of *point*.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> point = [0.9, 0.4]
>>> print(mesh2d.getNearestVertex(point))
[1,0]
"""
return _geom.Mesh_getNearestVertex(self, *args)
def __eq__(self, *args): return _geom.Mesh___eq__(self, *args)
def isValid(self):
"""
Check the mesh validity.
Returns
-------
validity : Bool
Tells if the mesh is valid i.e. if there is non-overlaping simplices,
no unused vertex, no simplices with duplicate vertices and no coincident
vertices.
"""
return _geom.Mesh_isValid(self)
def checkPointInSimplex(self, *args):
"""
Check whether the given point is inside a simplex.
Parameters
----------
point : float sequence
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
index : int
Integer characterizes one simplex of the mesh.
Returns
-------
isInside : Bool
Flag telling whether *point* is inside the simplex of index *index*.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplex = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplex)
>>> # Create a point A inside the simplex
>>> pointA = [0.6, 0.3]
>>> print(mesh2d.checkPointInSimplex(pointA, 0))
True
>>> # Create a point B outside the simplex
>>> pointB = [1.1, 0.6]
>>> print(mesh2d.checkPointInSimplex(pointB, 0))
False
"""
return _geom.Mesh_checkPointInSimplex(self, *args)
def getVertices(self):
"""
Get the vertices of the mesh.
Returns
-------
vertices : 2D float sequence
Cordinates in :math:`\\Rset^{dim}` of the vertices,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getVertices())
0 : [ 0 0 ]
1 : [ 1 0 ]
2 : [ 1 1 ]
"""
return _geom.Mesh_getVertices(self)
def setVertices(self, *args):
"""
Set the vertices of the mesh.
Parameters
----------
vertices : 2D float sequence
Cordinates in :math:`\\Rset^{dim}` of the vertices,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> mesh = ot.Mesh()
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> mesh.setVertices(vertices)
"""
return _geom.Mesh_setVertices(self, *args)
def getVertex(self, *args):
"""
Get the vertex of a given index.
Parameters
----------
index : int
Index characterizing one vertex of the mesh.
Returns
-------
vertex : float sequence
Coordinates in :math:`\\Rset^{dim}` of the vertex of index *index*,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getVertex(1))
[1,0]
>>> print(mesh2d.getVertex(0))
[0,0]
"""
return _geom.Mesh_getVertex(self, *args)
def setVertex(self, *args):
"""
Set a vertex of a given index.
Parameters
----------
index : int
Index of the vertex to set.
vertex : float sequence
Cordinates in :math:`\\Rset^{dim}` of the vertex of index *index*,
where :math:`dim` is the dimension of the vertices of the mesh.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2]])
>>> mesh = ot.Mesh(vertices, simplices)
>>> vertex = [0.0, 0.5]
>>> mesh.setVertex(0, vertex)
>>> print(mesh.getVertices())
0 : [ 0 0.5 ]
1 : [ 1 0 ]
2 : [ 1 1 ]
"""
return _geom.Mesh_setVertex(self, *args)
def getSimplices(self):
"""
Get the simplices of the mesh.
Returns
-------
indicesCollection : 2D int sequence
List of indices defining all the simplices. The simplex
:math:`[i_1, \\dots, i_{n+1}]` relies the vertices of index
:math:`(i_1, \\dots, i_{n+1})` in :math:`\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2], [1, 2, 3]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getSimplices())
[[0,1,2],[1,2,3]]
"""
return _geom.Mesh_getSimplices(self)
def setSimplices(self, *args):
"""
Set the simplices of the mesh.
Parameters
----------
indices : 2D int sequence
List of indices defining all the simplices. The simplex
:math:`[i_1, \\dots, i_{n+1}]` relies the vertices of index
:math:`(i_1, \\dots, i_{n+1})` in :math:`\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
Examples
--------
>>> import openturns as ot
>>> mesh = ot.Mesh()
>>> simplices = ot.IndicesCollection([[0, 1, 2], [1, 2, 3]])
>>> mesh.setSimplices(simplices)
"""
return _geom.Mesh_setSimplices(self, *args)
def getSimplex(self, *args):
"""
Get the simplex of a given index.
Parameters
----------
index : int
Index characterizing one simplex of the mesh.
Returns
-------
indices : int sequence
Indices defining the simplex of index *index*. The simplex
:math:`[i_1, \\dots, i_{n+1}]` relies the vertices of index
:math:`(i_1, \\dots, i_{n+1})` in :math:`\\Rset^{dim}`. In dimension 1, a
simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a
triangle :math:`[i_1, i_2, i_3]`.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2], [1, 2, 3]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> print(mesh2d.getSimplex(0))
[0,1,2]
>>> print(mesh2d.getSimplex(1))
[1,2,3]
"""
return _geom.Mesh_getSimplex(self, *args)
def computeSimplexVolume(self, *args):
"""
Compute the volume of a given simplex.
Parameters
----------
index : int
Integer characterizes one simplex of the mesh.
Returns
-------
volume : float
Volume of the simplex of index *index*.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplex = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplex)
>>> print(mesh2d.computeSimplexVolume(0))
0.5
"""
return _geom.Mesh_computeSimplexVolume(self, *args)
def isRegular(self):
"""
Check if the mesh is regular (only for 1D meshes).
Returns
-------
isRegular : Bool
Tells if the mesh is regular or not.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.5], [1.5], [2.4], [3.5]]
>>> simplices = ot.IndicesCollection([[0, 1], [1, 2], [2, 3]])
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> print(mesh1d.isRegular())
False
>>> vertices = [[0.5], [1.5], [2.5], [3.5]]
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> print(mesh1d.isRegular())
True
"""
return _geom.Mesh_isRegular(self)
def draw(self):
"""
Draw the mesh.
Returns
-------
graph : :class:`~openturns.Graph`
If the dimension of the mesh is 1, it draws the corresponding interval,
using the :meth:`draw1D` method; if the dimension is 2, it draws the
triangular simplices, using the :meth:`draw2D` method; if the dimension is
3, it projects the simplices on the plane of the two first components,
using the :meth:`draw3D` method with its default parameters, superposing
the simplices.
"""
return _geom.Mesh_draw(self)
def draw1D(self):
"""
Draw the mesh of dimension 1.
Returns
-------
graph : :class:`~openturns.Graph`
Draws the line linking the vertices of the mesh when the mesh is of
dimension 1.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.5], [1.5], [2.1], [2.7]]
>>> simplices = ot.IndicesCollection([[0, 1], [1, 2], [2, 3]])
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> # Create a graph
>>> aGraph = mesh1d.draw1D()
>>> # Draw the mesh
>>> aGraph.draw('mesh1D')
"""
return _geom.Mesh_draw1D(self)
def draw2D(self):
"""
Draw the mesh of dimension 2.
Returns
-------
graph : :class:`~openturns.Graph`
Draws the edges of each simplex, when the mesh is of dimension 2.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2], [1, 2, 3]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> # Create a graph
>>> aGraph = mesh2d.draw2D()
>>> # Draw the mesh
>>> aGraph.draw('mesh2D')
"""
return _geom.Mesh_draw2D(self)
def draw3D(self, *args):
"""
Draw the bidimensional projection of the mesh.
Available usages:
draw(*drawEdge=True, rotation=ot.IdentityMatrix(3), shading=False, rho=1.0*)
Parameters
----------
drawEdge : Bool
Tells if the edge of each simplex has to be drawn.
rotation : :class:`~openturns.SquareMatrix`
Operates a rotation on the mesh before its projection of the plane of the
two first components.
shading : Bool
Enables to give a visual perception of depth and orientation.
rho : float, :math:`0 \\leq \\rho \\leq 1`
Contraction factor of the simplices. If :math:`\\rho < 1`, all the
simplices are contracted and appear deconnected: some holes are created,
which enables to see inside the mesh. If :math:`\\rho = 1`, the simplices
keep their initial size and appear connected. If :math:`\\rho = 0`, each
simplex is reduced to its gravity center.
Returns
-------
graph : :class:`~openturns.Graph`
Draws the bidimensional projection of the mesh on the :math:`(x,y)` plane.
Examples
--------
>>> import openturns as ot
>>> from math import cos, sin, pi
>>> vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0],
... [0.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0],
... [1.0, 1.0, 0.0], [1.0, 1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2, 4], [3, 5, 6, 7],
... [1, 2, 3, 6], [1, 2, 4, 6], [1, 3, 5, 6], [1, 4, 5, 6]])
>>> mesh3d = ot.Mesh(vertices, simplices)
>>> rotation = ot.SquareMatrix(3)
>>> rotation[0, 0] = cos(pi / 3.0)
>>> rotation[0, 1] = sin(pi / 3.0)
>>> rotation[1, 0] = -sin(pi / 3.0)
>>> rotation[1, 1] = cos(pi / 3.0)
>>> rotation[2, 2] = 1.0
>>> # Create a graph
>>> aGraph = mesh3d.draw3D(True, rotation)
>>> # Draw the mesh
>>> aGraph.draw('mesh3D')
"""
return _geom.Mesh_draw3D(self, *args)
def __repr__(self): return _geom.Mesh___repr__(self)
def __str__(self, offset=""): return _geom.Mesh___str__(self, offset)
def ImportFromMSHFile(*args):
"""
Import mesh from FreeFem 2D mesh files.
Parameters
----------
MSHFile : string
A MSH ASCII file.
Returns
-------
mesh : :class:`~openturns.Mesh`
Mesh defined in the file *MSHFile*.
"""
return _geom.Mesh_ImportFromMSHFile(*args)
if _newclass:ImportFromMSHFile = staticmethod(ImportFromMSHFile)
__swig_getmethods__["ImportFromMSHFile"] = lambda x: ImportFromMSHFile
def streamToVTKFormat(self):
"""
Give a VTK representation of the mesh.
Returns
-------
stream : string
VTK representation of the mesh.
"""
return _geom.Mesh_streamToVTKFormat(self)
def exportToVTKFile(self, *args):
"""
Export the mesh to a VTK file.
Parameters
----------
myVTKFile.vtk : string
Name of the created file which contains the mesh and the associated random
values that can be visualized with the open source software
`Paraview <http://www.paraview.org/>`_.
"""
return _geom.Mesh_exportToVTKFile(self, *args)
def __init__(self, *args):
this = _geom.new_Mesh(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _geom.delete_Mesh
__del__ = lambda self : None;
Mesh_swigregister = _geom.Mesh_swigregister
Mesh_swigregister(Mesh)
def Mesh_ImportFromMSHFile(*args):
"""
Import mesh from FreeFem 2D mesh files.
Parameters
----------
MSHFile : string
A MSH ASCII file.
Returns
-------
mesh : :class:`~openturns.Mesh`
Mesh defined in the file *MSHFile*.
"""
return _geom.Mesh_ImportFromMSHFile(*args)
class RegularGrid(Mesh):
__swig_setmethods__ = {}
for _s in [Mesh]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, RegularGrid, name, value)
__swig_getmethods__ = {}
for _s in [Mesh]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, RegularGrid, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _geom.RegularGrid_getClassName(self)
def __eq__(self, *args): return _geom.RegularGrid___eq__(self, *args)
def __ne__(self, *args): return _geom.RegularGrid___ne__(self, *args)
def getStart(self): return _geom.RegularGrid_getStart(self)
def getEnd(self): return _geom.RegularGrid_getEnd(self)
def getStep(self): return _geom.RegularGrid_getStep(self)
def getN(self): return _geom.RegularGrid_getN(self)
def getValue(self, *args): return _geom.RegularGrid_getValue(self, *args)
def getValues(self): return _geom.RegularGrid_getValues(self)
def follows(self, *args): return _geom.RegularGrid_follows(self, *args)
def isRegular(self):
"""
Check if the mesh is regular (only for 1D meshes).
Returns
-------
isRegular : Bool
Tells if the mesh is regular or not.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.5], [1.5], [2.4], [3.5]]
>>> simplices = ot.IndicesCollection([[0, 1], [1, 2], [2, 3]])
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> print(mesh1d.isRegular())
False
>>> vertices = [[0.5], [1.5], [2.5], [3.5]]
>>> mesh1d = ot.Mesh(vertices, simplices)
>>> print(mesh1d.isRegular())
True
"""
return _geom.RegularGrid_isRegular(self)
def getNearestVertexIndex(self, *args):
"""
Get the index of the nearest vertex of a given point.
Parameters
----------
point : float sequence
Point of dimension :math:`dim`, the dimension of the vertices of the mesh.
Returns
-------
index : int
Index of the simplex the nearest of *point* according to the Euclidean
norm.
Examples
--------
>>> import openturns as ot
>>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
>>> simplices = ot.IndicesCollection([[0, 1, 2]])
>>> mesh2d = ot.Mesh(vertices, simplices)
>>> point = [0.9, 0.4]
>>> print(mesh2d.getNearestVertexIndex(point))
1
"""
return _geom.RegularGrid_getNearestVertexIndex(self, *args)
def __repr__(self): return _geom.RegularGrid___repr__(self)
def __str__(self, offset=""): return _geom.RegularGrid___str__(self, offset)
def __init__(self, *args):
this = _geom.new_RegularGrid(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _geom.delete_RegularGrid
__del__ = lambda self : None;
RegularGrid_swigregister = _geom.RegularGrid_swigregister
RegularGrid_swigregister(RegularGrid)
class MeshFactoryImplementation(openturns.common.PersistentObject):
__swig_setmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MeshFactoryImplementation, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, MeshFactoryImplementation, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _geom.MeshFactoryImplementation_getClassName(self)
def __repr__(self): return _geom.MeshFactoryImplementation___repr__(self)
def __str__(self, offset=""): return _geom.MeshFactoryImplementation___str__(self, offset)
def build(self, *args): return _geom.MeshFactoryImplementation_build(self, *args)
def __init__(self, *args):
this = _geom.new_MeshFactoryImplementation(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _geom.delete_MeshFactoryImplementation
__del__ = lambda self : None;
MeshFactoryImplementation_swigregister = _geom.MeshFactoryImplementation_swigregister
MeshFactoryImplementation_swigregister(MeshFactoryImplementation)
class MeshFactoryImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
__swig_setmethods__ = {}
for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MeshFactoryImplementationTypedInterfaceObject, name, value)
__swig_getmethods__ = {}
for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, MeshFactoryImplementationTypedInterfaceObject, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _geom.new_MeshFactoryImplementationTypedInterfaceObject(*args)
try: self.this.append(this)
except: self.this = this
def getImplementation(self, *args):
"""
Accessor to the underlying implementation.
Returns
-------
impl : Implementation
The implementation class.
"""
return _geom.MeshFactoryImplementationTypedInterfaceObject_getImplementation(self, *args)
def setName(self, *args):
"""
Accessor to the object's name.
Parameters
----------
name : string
The name of the object.
"""
return _geom.MeshFactoryImplementationTypedInterfaceObject_setName(self, *args)
def getName(self):
"""
Accessor to the object's name.
Returns
-------
name : string
The name of the object.
"""
return _geom.MeshFactoryImplementationTypedInterfaceObject_getName(self)
def __eq__(self, *args): return _geom.MeshFactoryImplementationTypedInterfaceObject___eq__(self, *args)
__swig_destroy__ = _geom.delete_MeshFactoryImplementationTypedInterfaceObject
__del__ = lambda self : None;
MeshFactoryImplementationTypedInterfaceObject_swigregister = _geom.MeshFactoryImplementationTypedInterfaceObject_swigregister
MeshFactoryImplementationTypedInterfaceObject_swigregister(MeshFactoryImplementationTypedInterfaceObject)
class MeshFactory(MeshFactoryImplementationTypedInterfaceObject):
__swig_setmethods__ = {}
for _s in [MeshFactoryImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MeshFactory, name, value)
__swig_getmethods__ = {}
for _s in [MeshFactoryImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, MeshFactory, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _geom.MeshFactory_getClassName(self)
def __repr__(self): return _geom.MeshFactory___repr__(self)
def __str__(self, offset=""): return _geom.MeshFactory___str__(self, offset)
def build(self, *args): return _geom.MeshFactory_build(self, *args)
def __init__(self, *args):
this = _geom.new_MeshFactory(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _geom.delete_MeshFactory
__del__ = lambda self : None;
MeshFactory_swigregister = _geom.MeshFactory_swigregister
MeshFactory_swigregister(MeshFactory)
class IntervalMesher(MeshFactoryImplementation):
__swig_setmethods__ = {}
for _s in [MeshFactoryImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, IntervalMesher, name, value)
__swig_getmethods__ = {}
for _s in [MeshFactoryImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, IntervalMesher, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _geom.IntervalMesher_getClassName(self)
def setDiscretization(self, *args): return _geom.IntervalMesher_setDiscretization(self, *args)
def getDiscretization(self): return _geom.IntervalMesher_getDiscretization(self)
def __repr__(self): return _geom.IntervalMesher___repr__(self)
def __str__(self, offset=""): return _geom.IntervalMesher___str__(self, offset)
def build(self, *args): return _geom.IntervalMesher_build(self, *args)
def __init__(self, *args):
this = _geom.new_IntervalMesher(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _geom.delete_IntervalMesher
__del__ = lambda self : None;
IntervalMesher_swigregister = _geom.IntervalMesher_swigregister
IntervalMesher_swigregister(IntervalMesher)
# This file is compatible with both classic and new-style classes.
|