This file is indexed.

/usr/lib/python3/dist-packages/openturns/simulation.py is in python3-openturns 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.




"""
Simulation uncertainty propagation algorithms.
"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_simulation', [dirname(__file__)])
        except ImportError:
            import _simulation
            return _simulation
        if fp is not None:
            try:
                _mod = imp.load_module('_simulation', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _simulation = swig_import_helper()
    del swig_import_helper
else:
    import _simulation
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


class SwigPyIterator(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _simulation.delete_SwigPyIterator
    __del__ = lambda self : None;
    def value(self): return _simulation.SwigPyIterator_value(self)
    def incr(self, n=1): return _simulation.SwigPyIterator_incr(self, n)
    def decr(self, n=1): return _simulation.SwigPyIterator_decr(self, n)
    def distance(self, *args): return _simulation.SwigPyIterator_distance(self, *args)
    def equal(self, *args): return _simulation.SwigPyIterator_equal(self, *args)
    def copy(self): return _simulation.SwigPyIterator_copy(self)
    def next(self): return _simulation.SwigPyIterator_next(self)
    def __next__(self): return _simulation.SwigPyIterator___next__(self)
    def previous(self): return _simulation.SwigPyIterator_previous(self)
    def advance(self, *args): return _simulation.SwigPyIterator_advance(self, *args)
    def __eq__(self, *args): return _simulation.SwigPyIterator___eq__(self, *args)
    def __ne__(self, *args): return _simulation.SwigPyIterator___ne__(self, *args)
    def __iadd__(self, *args): return _simulation.SwigPyIterator___iadd__(self, *args)
    def __isub__(self, *args): return _simulation.SwigPyIterator___isub__(self, *args)
    def __add__(self, *args): return _simulation.SwigPyIterator___add__(self, *args)
    def __sub__(self, *args): return _simulation.SwigPyIterator___sub__(self, *args)
    def __iter__(self): return self
SwigPyIterator_swigregister = _simulation.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)

GCC_VERSION = _simulation.GCC_VERSION
class TestFailed:
    """TestFailed is used to raise an uniform exception in tests."""

    __type = "TestFailed"

    def __init__(self, reason=""):
        self.reason = reason

    def type(self):
        return TestFailed.__type

    def what(self):
        return self.reason

    def __str__(self):
        return TestFailed.__type + ": " + self.reason

    def __lshift__(self, ch):
        self.reason += ch
        return self

import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
import openturns.transformation
import openturns.analytical
import openturns.metamodel
import openturns.weightedexperiment
import openturns.orthogonalbasis
import openturns.randomvector
class SimulationResultImplementation(openturns.common.PersistentObject):
    """
    Simulation result.

    Notes
    -----
    Structure created by the method run() of a :class:`~openturns.Simulation`,
    and obtained thanks to the method getResult().

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> limitState = ot.NumericalMathFunction(['E', 'F', 'L', 'I'], ['y'], ['-F*L^3/(3.*E*I)'])
    >>> # Enable the history mecanism in order to use the getImportanceFactors method
    >>> limitState.enableHistory()
    >>> myDistribution = ot.Normal([50., 1., 10., 5.], [1.]*4, ot.IdentityMatrix(4))
    >>> output = ot.RandomVector(limitState, ot.RandomVector(myDistribution))
    >>> myEvent = ot.Event(output, ot.Less(), -3.0)
    >>> myLHS = ot.LHS(myEvent)
    >>> myLHS.run()
    >>> SimulationLHSResult = myLHS.getResult()
    >>> print(SimulationLHSResult.getImportanceFactors())
    [marginal 1 : 0.000722617, marginal 2 : 0.635094, marginal 3 : 0.275692, marginal 4 : 0.0884917]
    """
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SimulationResultImplementation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SimulationResultImplementation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SimulationResultImplementation_getClassName(self)

    def getEvent(self):
        """
        Accessor to the event.

        Returns
        -------
        event : :class:`~openturns.Event`
            Event we want to evaluate the probability.
        """
        return _simulation.SimulationResultImplementation_getEvent(self)

    def setEvent(self, *args): return _simulation.SimulationResultImplementation_setEvent(self, *args)
    def getProbabilityEstimate(self):
        """
        Accessor to the probability estimate.

        Returns
        -------
        probaEstimate : float
            Estimate of the event probability.
        """
        return _simulation.SimulationResultImplementation_getProbabilityEstimate(self)

    def setProbabilityEstimate(self, *args):
        """
        Accessor to the probability estimate.

        Parameters
        ----------
        probaEstimate : float, :math:`0 \\leq P_e \\leq 1`
            Estimate of the event probability.
        """
        return _simulation.SimulationResultImplementation_setProbabilityEstimate(self, *args)

    def getVarianceEstimate(self):
        """
        Accessor to the variance estimate.

        Returns
        -------
        varianceEstimate : float
            Variance estimate.
        """
        return _simulation.SimulationResultImplementation_getVarianceEstimate(self)

    def setVarianceEstimate(self, *args):
        """
        Accessor to the variance estimate.

        Parameters
        ----------
        varianceEstimate : float, :math:`Var_e \\geq 0`
            Variance estimate.
        """
        return _simulation.SimulationResultImplementation_setVarianceEstimate(self, *args)

    def getCoefficientOfVariation(self):
        """
        Accessor to the coefficient of variation.

        Returns
        -------
        coefficient : float
            Coefficient of variation of the simulated sample which is equal to
            :math:`\\sqrt{Var_e} / P_e` with :math:`Var_e` the variance estimate and
            :math:`P_e` the probability estimate.
        """
        return _simulation.SimulationResultImplementation_getCoefficientOfVariation(self)

    def getStandardDeviation(self):
        """
        Accessor to the standard deviation.

        Returns
        -------
        sigma : float
            Standard deviation of the estimator at the end of the simulation.
        """
        return _simulation.SimulationResultImplementation_getStandardDeviation(self)

    def getMeanPointInEventDomain(self):
        """
        Accessor to the mean point conditioned to the event realization.

        Returns
        -------
        meanPoint : float sequence
            Mean point in the physical space of all the simulations generated by the
            :class:`~openturns.Simulation` algorithm that failed into the event domain.

        Notes
        -----
        .. warning::
            This notion is only available if the history mecanism of the model is
            activated (see :meth:`~openturns.NumericalMathFunction.enableHistory`).
        """
        return _simulation.SimulationResultImplementation_getMeanPointInEventDomain(self)

    def getImportanceFactors(self):
        """
        Accessor to the importance factors.

        Returns
        -------
        importanceFactors : float sequence with description for each component
            Importance factors.

        Notes
        -----
        The importance factors :math:`\\alpha_i` are evaluated from the coordinates of
        the mean point of event domain :math:`\\vect{X}^*_{event}`, mapped into the
        standard space as follows:

        .. math::

          \\alpha_i = \\displaystyle \\frac{\\left(U_{i}^*\\right)^2}{||\\vect{U}^*||^2}

        where :math:`\\vect{U}^* = T(\\vect{X}^*_{event})`
        with :math:`T` the iso-probabilistic transformation and the mean point
        :math:`\\vect{X}^*_{event} = \\displaystyle \\frac{1}{n} \\sum_{i=1}^{n} \\vect{X}_i 1_{event}(\\vect{X}_i)`.

        .. warning::
            This notion is only available if the history mecanism of the model is
            activated (see :meth:`~openturns.NumericalMathFunction.enableHistory`).

        See also
        --------
        drawImportanceFactors
        """
        return _simulation.SimulationResultImplementation_getImportanceFactors(self)

    def drawImportanceFactors(self):
        """
        Draw the importance factors as an OpenTURNS :class:`~openturns.Graph`.

        .. warning::
            It is necessary to enable the history of the model to perform this analysis
            (see :meth:`~openturns.NumericalMathFunction.enableHistory`).

        See also
        --------
        getImportanceFactors
        """
        return _simulation.SimulationResultImplementation_drawImportanceFactors(self)

    def getOuterSampling(self):
        """
        Accessor to the outer sampling.

        Returns
        -------
        outerSampling : int
            Number of groups of terms in the probability simulation estimator.
        """
        return _simulation.SimulationResultImplementation_getOuterSampling(self)

    def setOuterSampling(self, *args):
        """
        Accessor to the outer sampling.

        Parameters
        ----------
        outerSampling : int, :math:`outerSampling \\geq 0`
            Number of groups of terms in the probability simulation estimator.
        """
        return _simulation.SimulationResultImplementation_setOuterSampling(self, *args)

    def getBlockSize(self):
        """
        Accessor to the block size.

        Returns
        -------
        blockSize : int
            Number of terms in the probability simulation estimator grouped together.
        """
        return _simulation.SimulationResultImplementation_getBlockSize(self)

    def setBlockSize(self, *args):
        """
        Accessor to the block size.

        Parameters
        ----------
        blockSize : int, :math:`blockSize \\geq 0`
            Number of terms in the probability simulation estimator grouped together.
        """
        return _simulation.SimulationResultImplementation_setBlockSize(self, *args)

    def getConfidenceLength(self, *args):
        """
        Accessor to the confidence length.

        Parameters
        ----------
        level : float, :math:`level \\in ]0, 1[`
            Confidence level. By default, it is :math:`0.95`.

        Returns
        -------
        confidenceLength : float
            Length of the confidence interval at the confidence level *level*.
        """
        return _simulation.SimulationResultImplementation_getConfidenceLength(self, *args)

    def __repr__(self): return _simulation.SimulationResultImplementation___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_SimulationResultImplementation(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SimulationResultImplementation
    __del__ = lambda self : None;
SimulationResultImplementation_swigregister = _simulation.SimulationResultImplementation_swigregister
SimulationResultImplementation_swigregister(SimulationResultImplementation)

class SimulationResultImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SimulationResultImplementationTypedInterfaceObject, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SimulationResultImplementationTypedInterfaceObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        this = _simulation.new_SimulationResultImplementationTypedInterfaceObject(*args)
        try: self.this.append(this)
        except: self.this = this
    def getImplementation(self, *args):
        """
        Accessor to the underlying implementation.

        Returns
        -------
        impl : Implementation
            The implementation class.
        """
        return _simulation.SimulationResultImplementationTypedInterfaceObject_getImplementation(self, *args)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _simulation.SimulationResultImplementationTypedInterfaceObject_setName(self, *args)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _simulation.SimulationResultImplementationTypedInterfaceObject_getName(self)

    def __eq__(self, *args): return _simulation.SimulationResultImplementationTypedInterfaceObject___eq__(self, *args)
    __swig_destroy__ = _simulation.delete_SimulationResultImplementationTypedInterfaceObject
    __del__ = lambda self : None;
SimulationResultImplementationTypedInterfaceObject_swigregister = _simulation.SimulationResultImplementationTypedInterfaceObject_swigregister
SimulationResultImplementationTypedInterfaceObject_swigregister(SimulationResultImplementationTypedInterfaceObject)

class SimulationResult(SimulationResultImplementationTypedInterfaceObject):
    """
    Simulation result.

    Notes
    -----
    Structure created by the method run() of a :class:`~openturns.Simulation`,
    and obtained thanks to the method getResult().

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> limitState = ot.NumericalMathFunction(['E', 'F', 'L', 'I'], ['y'], ['-F*L^3/(3.*E*I)'])
    >>> # Enable the history mecanism in order to use the getImportanceFactors method
    >>> limitState.enableHistory()
    >>> myDistribution = ot.Normal([50., 1., 10., 5.], [1.]*4, ot.IdentityMatrix(4))
    >>> output = ot.RandomVector(limitState, ot.RandomVector(myDistribution))
    >>> myEvent = ot.Event(output, ot.Less(), -3.0)
    >>> myLHS = ot.LHS(myEvent)
    >>> myLHS.run()
    >>> SimulationLHSResult = myLHS.getResult()
    >>> print(SimulationLHSResult.getImportanceFactors())
    [marginal 1 : 0.000722617, marginal 2 : 0.635094, marginal 3 : 0.275692, marginal 4 : 0.0884917]
    """
    __swig_setmethods__ = {}
    for _s in [SimulationResultImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SimulationResult, name, value)
    __swig_getmethods__ = {}
    for _s in [SimulationResultImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SimulationResult, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SimulationResult_getClassName(self)

    def getEvent(self):
        """
        Accessor to the event.

        Returns
        -------
        event : :class:`~openturns.Event`
            Event we want to evaluate the probability.
        """
        return _simulation.SimulationResult_getEvent(self)

    def getProbabilityEstimate(self):
        """
        Accessor to the probability estimate.

        Returns
        -------
        probaEstimate : float
            Estimate of the event probability.
        """
        return _simulation.SimulationResult_getProbabilityEstimate(self)

    def setProbabilityEstimate(self, *args):
        """
        Accessor to the probability estimate.

        Parameters
        ----------
        probaEstimate : float, :math:`0 \\leq P_e \\leq 1`
            Estimate of the event probability.
        """
        return _simulation.SimulationResult_setProbabilityEstimate(self, *args)

    def getVarianceEstimate(self):
        """
        Accessor to the variance estimate.

        Returns
        -------
        varianceEstimate : float
            Variance estimate.
        """
        return _simulation.SimulationResult_getVarianceEstimate(self)

    def setVarianceEstimate(self, *args):
        """
        Accessor to the variance estimate.

        Parameters
        ----------
        varianceEstimate : float, :math:`Var_e \\geq 0`
            Variance estimate.
        """
        return _simulation.SimulationResult_setVarianceEstimate(self, *args)

    def getCoefficientOfVariation(self):
        """
        Accessor to the coefficient of variation.

        Returns
        -------
        coefficient : float
            Coefficient of variation of the simulated sample which is equal to
            :math:`\\sqrt{Var_e} / P_e` with :math:`Var_e` the variance estimate and
            :math:`P_e` the probability estimate.
        """
        return _simulation.SimulationResult_getCoefficientOfVariation(self)

    def getStandardDeviation(self):
        """
        Accessor to the standard deviation.

        Returns
        -------
        sigma : float
            Standard deviation of the estimator at the end of the simulation.
        """
        return _simulation.SimulationResult_getStandardDeviation(self)

    def getMeanPointInEventDomain(self):
        """
        Accessor to the mean point conditioned to the event realization.

        Returns
        -------
        meanPoint : float sequence
            Mean point in the physical space of all the simulations generated by the
            :class:`~openturns.Simulation` algorithm that failed into the event domain.

        Notes
        -----
        .. warning::
            This notion is only available if the history mecanism of the model is
            activated (see :meth:`~openturns.NumericalMathFunction.enableHistory`).
        """
        return _simulation.SimulationResult_getMeanPointInEventDomain(self)

    def getImportanceFactors(self):
        """
        Accessor to the importance factors.

        Returns
        -------
        importanceFactors : float sequence with description for each component
            Importance factors.

        Notes
        -----
        The importance factors :math:`\\alpha_i` are evaluated from the coordinates of
        the mean point of event domain :math:`\\vect{X}^*_{event}`, mapped into the
        standard space as follows:

        .. math::

          \\alpha_i = \\displaystyle \\frac{\\left(U_{i}^*\\right)^2}{||\\vect{U}^*||^2}

        where :math:`\\vect{U}^* = T(\\vect{X}^*_{event})`
        with :math:`T` the iso-probabilistic transformation and the mean point
        :math:`\\vect{X}^*_{event} = \\displaystyle \\frac{1}{n} \\sum_{i=1}^{n} \\vect{X}_i 1_{event}(\\vect{X}_i)`.

        .. warning::
            This notion is only available if the history mecanism of the model is
            activated (see :meth:`~openturns.NumericalMathFunction.enableHistory`).

        See also
        --------
        drawImportanceFactors
        """
        return _simulation.SimulationResult_getImportanceFactors(self)

    def drawImportanceFactors(self):
        """
        Draw the importance factors as an OpenTURNS :class:`~openturns.Graph`.

        .. warning::
            It is necessary to enable the history of the model to perform this analysis
            (see :meth:`~openturns.NumericalMathFunction.enableHistory`).

        See also
        --------
        getImportanceFactors
        """
        return _simulation.SimulationResult_drawImportanceFactors(self)

    def getOuterSampling(self):
        """
        Accessor to the outer sampling.

        Returns
        -------
        outerSampling : int
            Number of groups of terms in the probability simulation estimator.
        """
        return _simulation.SimulationResult_getOuterSampling(self)

    def setOuterSampling(self, *args):
        """
        Accessor to the outer sampling.

        Parameters
        ----------
        outerSampling : int, :math:`outerSampling \\geq 0`
            Number of groups of terms in the probability simulation estimator.
        """
        return _simulation.SimulationResult_setOuterSampling(self, *args)

    def getBlockSize(self):
        """
        Accessor to the block size.

        Returns
        -------
        blockSize : int
            Number of terms in the probability simulation estimator grouped together.
        """
        return _simulation.SimulationResult_getBlockSize(self)

    def setBlockSize(self, *args):
        """
        Accessor to the block size.

        Parameters
        ----------
        blockSize : int, :math:`blockSize \\geq 0`
            Number of terms in the probability simulation estimator grouped together.
        """
        return _simulation.SimulationResult_setBlockSize(self, *args)

    def getConfidenceLength(self, *args):
        """
        Accessor to the confidence length.

        Parameters
        ----------
        level : float, :math:`level \\in ]0, 1[`
            Confidence level. By default, it is :math:`0.95`.

        Returns
        -------
        confidenceLength : float
            Length of the confidence interval at the confidence level *level*.
        """
        return _simulation.SimulationResult_getConfidenceLength(self, *args)

    def __repr__(self): return _simulation.SimulationResult___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_SimulationResult(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SimulationResult
    __del__ = lambda self : None;
SimulationResult_swigregister = _simulation.SimulationResult_swigregister
SimulationResult_swigregister(SimulationResult)

class Simulation(openturns.common.PersistentObject):
    """
    Base class for simulations.

    Available constructor:
        Simulation(*event, verbose=True, convergenceStrategy=ot.Compact()*)

    Parameters
    ----------
    event : :class:`~openturns.Event`
        The event we are computing the probability of.
    verbose : bool
        If *True*, make the computation verbose.
    convergenceStrategy : :class:`~openturns.HistoryStrategy`
        Storage strategy used to store the values of the probability estimator and
        its variance during the simulation algorithm.

    Notes
    -----
    A Simulation object can be created only through its derived classes:
    :class:`~openturns.DirectionalSampling`, :class:`~openturns.ImportanceSampling`,
    :class:`~openturns.LHS`, :class:`~openturns.MonteCarlo`,
    :class:`~openturns.PostAnalyticalControlledImportanceSampling`,
    :class:`~openturns.PostAnalyticalImportanceSampling`,
    :class:`~openturns.QuasiMonteCarlo`, :class:`~openturns.RandomizedLHS`,
    :class:`~openturns.RandomizedQuasiMonteCarlo`.

    See also
    --------
    SimulationResult
    """
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, Simulation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, Simulation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.Simulation_getClassName(self)

    def getEvent(self):
        """
        Accessor to the event.

        Returns
        -------
        event : :class:`~openturns.Event`
            Event we want to evaluate the probability.
        """
        return _simulation.Simulation_getEvent(self)

    def getResult(self):
        """
        Accessor to the results.

        Returns
        -------
        results : :class:`~openturns.SimulationResult`
            Structure containing all the results obtained after simulation and created
            by the method :py:meth:`run`.
        """
        return _simulation.Simulation_getResult(self)

    def setMaximumOuterSampling(self, *args):
        """
        Accessor to the maximum sample size.

        Parameters
        ----------
        outerSampling : int
            Maximum number of groups of terms in the probability simulation estimator.
        """
        return _simulation.Simulation_setMaximumOuterSampling(self, *args)

    def getMaximumOuterSampling(self):
        """
        Accessor to the maximum sample size.

        Returns
        -------
        outerSampling : int
            Maximum number of groups of terms in the probability simulation estimator.
        """
        return _simulation.Simulation_getMaximumOuterSampling(self)

    def setMaximumCoefficientOfVariation(self, *args):
        """
        Accessor to the maximum coefficient of variation.

        Parameters
        ----------
        coefficient : float
            Maximum coefficient of variation of the simulated sample.
        """
        return _simulation.Simulation_setMaximumCoefficientOfVariation(self, *args)

    def getMaximumCoefficientOfVariation(self):
        """
        Accessor to the maximum coefficient of variation.

        Returns
        -------
        coefficient : float
            Maximum coefficient of variation of the simulated sample.
        """
        return _simulation.Simulation_getMaximumCoefficientOfVariation(self)

    def setMaximumStandardDeviation(self, *args):
        """
        Accessor to the maximum standard deviation.

        Parameters
        ----------
        sigma : float, :math:`\\sigma > 0`
            Maximum standard deviation of the estimator.
        """
        return _simulation.Simulation_setMaximumStandardDeviation(self, *args)

    def getMaximumStandardDeviation(self):
        """
        Accessor to the maximum standard deviation.

        Returns
        -------
        sigma : float, :math:`\\sigma > 0`
            Maximum standard deviation of the estimator.
        """
        return _simulation.Simulation_getMaximumStandardDeviation(self)

    def setBlockSize(self, *args):
        """
        Accessor to the block size.

        Parameters
        ----------
        blockSize : int, :math:`blockSize \\geq 1`
            Number of terms in the probability simulation estimator grouped together.
            It is set by default to 1.

        Notes
        -----
        For Monte Carlo, LHS and Importance Sampling methods, this allows to save space
        while allowing multithreading, when available (wrapper function) we recommend
        to use the number of available CPUs; for the Directional Sampling, we recommend
        to set it to 1.
        """
        return _simulation.Simulation_setBlockSize(self, *args)

    def getBlockSize(self):
        """
        Accessor to the block size.

        Returns
        -------
        blockSize : int
            Number of terms in the probability simulation estimator grouped together.
            It is set by default to 1.
        """
        return _simulation.Simulation_getBlockSize(self)

    def setVerbose(self, *args):
        """
        Accessor to verbosity.

        Parameters
        ----------
        verbosity_enabled : bool
            If *True*, make the computation verbose. By default it is verbose.
        """
        return _simulation.Simulation_setVerbose(self, *args)

    def getVerbose(self):
        """
        Accessor to verbosity.

        Returns
        -------
        verbosity_enabled : bool
            If *True*, the computation is verbose. By default it is verbose.
        """
        return _simulation.Simulation_getVerbose(self)

    def setConvergenceStrategy(self, *args):
        """
        Accessor to the convergence strategy.

        Parameters
        ----------
        storage_strategy : :class:`~openturns.HistoryStrategy`
            Storage strategy used to store the values of the probability estimator
            and its variance during the simulation algorithm.
        """
        return _simulation.Simulation_setConvergenceStrategy(self, *args)

    def getConvergenceStrategy(self):
        """
        Accessor to the convergence strategy.

        Returns
        -------
        storage_strategy : :class:`~openturns.HistoryStrategy`
            Storage strategy used to store the values of the probability estimator
            and its variance during the simulation algorithm.
        """
        return _simulation.Simulation_getConvergenceStrategy(self)

    def __repr__(self): return _simulation.Simulation___repr__(self)
    def run(self):
        """
        Launch simulation.

        Notes
        -----
        It launches the simulation and creates a :class:`~openturns.SimulationResult`,
        structure containing all the results obtained after simulation.
        It computes the probability of occurence of the given event by computing the
        empirical mean of a sample of size at most *outerSampling * blockSize*,
        this sample being built by blocks of size *blockSize*. It allows to use
        efficiently the distribution of the computation as well as it allows to deal
        with a sample size :math:`> 2^{32}` by a combination of *blockSize* and
        *outerSampling*.

        see also
        --------
        setBlockSize, setMaximumOuterSampling, ResourceMap, SimulationResult
        """
        return _simulation.Simulation_run(self)

    def drawProbabilityConvergence(self, *args):
        """
        Draw the probability convergence at a given level.

        Parameters
        ----------
        level : float, optional
            The probability convergence is drawn at this given confidence length
            *level*. By default *level* is 0.95.

        Returns
        -------
        graph : a :class:`~openturns.Graph`
            probability convergence graph
        """
        return _simulation.Simulation_drawProbabilityConvergence(self, *args)

    def __init__(self, *args): 
        this = _simulation.new_Simulation(*args)
        try: self.this.append(this)
        except: self.this = this
    def setProgressCallback(self, *args):
        """
        Set up a progress callback.

        Parameters
        ----------
        callback : callable
            Takes a float as argument as percentage of progress.
        """
        return _simulation.Simulation_setProgressCallback(self, *args)

    def setStopCallback(self, *args):
        """
        Set up a stop callback.

        Parameters
        ----------
        callback : callable
            Returns an int deciding whether to stop or continue.
        """
        return _simulation.Simulation_setStopCallback(self, *args)

    __swig_destroy__ = _simulation.delete_Simulation
    __del__ = lambda self : None;
Simulation_swigregister = _simulation.Simulation_swigregister
Simulation_swigregister(Simulation)

class PostAnalyticalSimulation(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, PostAnalyticalSimulation, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, PostAnalyticalSimulation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.PostAnalyticalSimulation_getClassName(self)

    def getAnalyticalResult(self): return _simulation.PostAnalyticalSimulation_getAnalyticalResult(self)
    def getControlProbability(self): return _simulation.PostAnalyticalSimulation_getControlProbability(self)
    def __repr__(self): return _simulation.PostAnalyticalSimulation___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_PostAnalyticalSimulation(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_PostAnalyticalSimulation
    __del__ = lambda self : None;
PostAnalyticalSimulation_swigregister = _simulation.PostAnalyticalSimulation_swigregister
PostAnalyticalSimulation_swigregister(PostAnalyticalSimulation)

class Wilks(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, Wilks, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, Wilks, name)
    __repr__ = _swig_repr
    __swig_getmethods__["ComputeSampleSize"] = lambda x: _simulation.Wilks_ComputeSampleSize
    if _newclass:ComputeSampleSize = staticmethod(_simulation.Wilks_ComputeSampleSize)
    def computeQuantileBound(self, *args): return _simulation.Wilks_computeQuantileBound(self, *args)
    def __init__(self, *args): 
        this = _simulation.new_Wilks(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_Wilks
    __del__ = lambda self : None;
Wilks_swigregister = _simulation.Wilks_swigregister
Wilks_swigregister(Wilks)

def Wilks_ComputeSampleSize(*args):
  return _simulation.Wilks_ComputeSampleSize(*args)
Wilks_ComputeSampleSize = _simulation.Wilks_ComputeSampleSize

class MonteCarlo(Simulation):
    """
    Monte Carlo method.

    Available constructors:
        MonteCarlo(*event=ot.Event()*)

    Parameters
    ----------
    event : :class:`~openturns.Event`
        Event we are computing the probability of.

    Notes
    -----
    Using the probability distribution of a random vector :math:`\\vect{X}`, we seek
    to evaluate the following probability:

    .. math::

        P_f = \\Prob{g\\left( \\vect{X},\\vect{d} \\right) \\leq 0}

    Here, :math:`\\vect{X}` is a random vector, :math:`\\vect{d}` a deterministic
    vector, :math:`g(\\vect{X},\\vect{d})` the function known as 'limit state function'
    which enables the definition of the event
    :math:`\\cD_f = \\{\\vect{X} \\in \\Rset^n \\, / \\, g(\\vect{X},\\vect{d}) \\le 0\\}`.

    If we have the set :math:`\\left\\{ \\vect{x}_1,\\ldots,\\vect{x}_N \\right\\}` of
    :math:`N` independent samples of the random vector :math:`\\vect{X}`, we can
    estimate :math:`\\widehat{P}_f` as follows:

    .. math::

        \\widehat{P}_f = \\frac{1}{N} \\sum_{i=1}^N \\mathbf{1}_{ \\left\\{ g(\\vect{x}_i,\\vect{d}) \\leq 0 \\right\\} }

    where :math:`\\mathbf{1}_{ \\left\\{ g(\\vect{x}_i,\\vect{d}) \\leq 0 \\right\\} }`
    describes the indicator function equal to 1 if
    :math:`g(\\vect{x}_i,\\vect{d}) \\leq 0` and equal to 0 otherwise;
    the idea here is in fact to estimate the required probability by the proportion
    of cases, among the :math:`N` samples of :math:`\\vect{X}`, for which the event
    :math:`\\cD_f` occurs.

    By the law of large numbers, we know that this estimation converges to the
    required value :math:`P_f` as the sample size :math:`N` tends to infinity.

    The Central Limit Theorem allows to build an asymptotic confidence interval
    using the normal limit distribution as follows:

    .. math::

        \\lim_{N\\rightarrow\\infty}\\Prob{P_f\\in[\\widehat{P}_{f,\\inf},\\widehat{P}_{f,\\sup}]}=\\alpha

    with :math:`\\widehat{P}_{f,\\inf}=\\widehat{P}_f - q_{\\alpha}\\sqrt{\\frac{\\widehat{P}_f(1-\\widehat{P}_f)}{N}}`,
    :math:`\\widehat{P}_{f,\\sup}=\\widehat{P}_f + q_{\\alpha}\\sqrt{\\frac{\\widehat{P}_f(1-\\widehat{P}_f)}{N}}`
    and :math:`q_\\alpha` is the :math:`(1+\\alpha)/2`-quantile of the standard
    normal distribution.

    Examples
    --------
    >>> import openturns as ot
    >>> ot.RandomGenerator.SetSeed(0)
    >>> myFunction = ot.NumericalMathFunction(['E', 'F', 'L', 'I'], ['d'], ['-F*L^3/(3*E*I)'])
    >>> myDistribution = ot.Normal([50., 1., 10., 5.], [1., 1., 1., 1.], ot.IdentityMatrix(4))
    >>> # We create a 'usual' RandomVector from the Distribution
    >>> vect = ot.RandomVector(myDistribution)
    >>> # We create a composite random vector
    >>> output = ot.RandomVector(myFunction, vect)
    >>> # We create an Event from this RandomVector
    >>> myEvent = ot.Event(output, ot.Less(), -3.0)
    >>> # We create a Monte Carlo algorithm
    >>> myAlgo = ot.MonteCarlo(myEvent)
    >>> myAlgo.setMaximumOuterSampling(250)
    >>> myAlgo.setBlockSize(4)
    >>> myAlgo.setMaximumCoefficientOfVariation(0.1)
    >>> # Perform the simulation
    >>> myAlgo.run()
    >>> print('Probability estimate=%.6f' % myAlgo.getResult().getProbabilityEstimate())
    Probability estimate=0.146505
    """
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MonteCarlo, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MonteCarlo, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.MonteCarlo_getClassName(self)

    def __repr__(self): return _simulation.MonteCarlo___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_MonteCarlo(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_MonteCarlo
    __del__ = lambda self : None;
MonteCarlo_swigregister = _simulation.MonteCarlo_swigregister
MonteCarlo_swigregister(MonteCarlo)

class LHS(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LHS, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LHS, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.LHS_getClassName(self)

    def run(self):
        """
        Launch simulation.

        Notes
        -----
        It launches the simulation and creates a :class:`~openturns.SimulationResult`,
        structure containing all the results obtained after simulation.
        It computes the probability of occurence of the given event by computing the
        empirical mean of a sample of size at most *outerSampling * blockSize*,
        this sample being built by blocks of size *blockSize*. It allows to use
        efficiently the distribution of the computation as well as it allows to deal
        with a sample size :math:`> 2^{32}` by a combination of *blockSize* and
        *outerSampling*.

        see also
        --------
        setBlockSize, setMaximumOuterSampling, ResourceMap, SimulationResult
        """
        return _simulation.LHS_run(self)

    def __repr__(self): return _simulation.LHS___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_LHS(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_LHS
    __del__ = lambda self : None;
LHS_swigregister = _simulation.LHS_swigregister
LHS_swigregister(LHS)

class RandomizedLHS(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RandomizedLHS, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RandomizedLHS, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RandomizedLHS_getClassName(self)

    def __repr__(self): return _simulation.RandomizedLHS___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_RandomizedLHS(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RandomizedLHS
    __del__ = lambda self : None;
RandomizedLHS_swigregister = _simulation.RandomizedLHS_swigregister
RandomizedLHS_swigregister(RandomizedLHS)

class ImportanceSampling(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, ImportanceSampling, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, ImportanceSampling, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.ImportanceSampling_getClassName(self)

    def getImportanceDistribution(self): return _simulation.ImportanceSampling_getImportanceDistribution(self)
    def __repr__(self): return _simulation.ImportanceSampling___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_ImportanceSampling(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_ImportanceSampling
    __del__ = lambda self : None;
ImportanceSampling_swigregister = _simulation.ImportanceSampling_swigregister
ImportanceSampling_swigregister(ImportanceSampling)

class PostAnalyticalControlledImportanceSampling(PostAnalyticalSimulation):
    __swig_setmethods__ = {}
    for _s in [PostAnalyticalSimulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, PostAnalyticalControlledImportanceSampling, name, value)
    __swig_getmethods__ = {}
    for _s in [PostAnalyticalSimulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, PostAnalyticalControlledImportanceSampling, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.PostAnalyticalControlledImportanceSampling_getClassName(self)

    def __repr__(self): return _simulation.PostAnalyticalControlledImportanceSampling___repr__(self)
    def computeBlockSample(self): return _simulation.PostAnalyticalControlledImportanceSampling_computeBlockSample(self)
    def __init__(self, *args): 
        this = _simulation.new_PostAnalyticalControlledImportanceSampling(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_PostAnalyticalControlledImportanceSampling
    __del__ = lambda self : None;
PostAnalyticalControlledImportanceSampling_swigregister = _simulation.PostAnalyticalControlledImportanceSampling_swigregister
PostAnalyticalControlledImportanceSampling_swigregister(PostAnalyticalControlledImportanceSampling)

class PostAnalyticalImportanceSampling(PostAnalyticalSimulation):
    __swig_setmethods__ = {}
    for _s in [PostAnalyticalSimulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, PostAnalyticalImportanceSampling, name, value)
    __swig_getmethods__ = {}
    for _s in [PostAnalyticalSimulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, PostAnalyticalImportanceSampling, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.PostAnalyticalImportanceSampling_getClassName(self)

    def __repr__(self): return _simulation.PostAnalyticalImportanceSampling___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_PostAnalyticalImportanceSampling(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_PostAnalyticalImportanceSampling
    __del__ = lambda self : None;
PostAnalyticalImportanceSampling_swigregister = _simulation.PostAnalyticalImportanceSampling_swigregister
PostAnalyticalImportanceSampling_swigregister(PostAnalyticalImportanceSampling)

class RootStrategyImplementation(openturns.common.PersistentObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RootStrategyImplementation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RootStrategyImplementation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RootStrategyImplementation_getClassName(self)

    def solve(self, *args): return _simulation.RootStrategyImplementation_solve(self, *args)
    def setSolver(self, *args): return _simulation.RootStrategyImplementation_setSolver(self, *args)
    def getSolver(self): return _simulation.RootStrategyImplementation_getSolver(self)
    def setMaximumDistance(self, *args): return _simulation.RootStrategyImplementation_setMaximumDistance(self, *args)
    def getMaximumDistance(self): return _simulation.RootStrategyImplementation_getMaximumDistance(self)
    def setStepSize(self, *args): return _simulation.RootStrategyImplementation_setStepSize(self, *args)
    def getStepSize(self): return _simulation.RootStrategyImplementation_getStepSize(self)
    def setOriginValue(self, *args): return _simulation.RootStrategyImplementation_setOriginValue(self, *args)
    def getOriginValue(self): return _simulation.RootStrategyImplementation_getOriginValue(self)
    def __repr__(self): return _simulation.RootStrategyImplementation___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_RootStrategyImplementation(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RootStrategyImplementation
    __del__ = lambda self : None;
RootStrategyImplementation_swigregister = _simulation.RootStrategyImplementation_swigregister
RootStrategyImplementation_swigregister(RootStrategyImplementation)

class RootStrategyImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RootStrategyImplementationTypedInterfaceObject, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RootStrategyImplementationTypedInterfaceObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        this = _simulation.new_RootStrategyImplementationTypedInterfaceObject(*args)
        try: self.this.append(this)
        except: self.this = this
    def getImplementation(self, *args):
        """
        Accessor to the underlying implementation.

        Returns
        -------
        impl : Implementation
            The implementation class.
        """
        return _simulation.RootStrategyImplementationTypedInterfaceObject_getImplementation(self, *args)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _simulation.RootStrategyImplementationTypedInterfaceObject_setName(self, *args)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _simulation.RootStrategyImplementationTypedInterfaceObject_getName(self)

    def __eq__(self, *args): return _simulation.RootStrategyImplementationTypedInterfaceObject___eq__(self, *args)
    __swig_destroy__ = _simulation.delete_RootStrategyImplementationTypedInterfaceObject
    __del__ = lambda self : None;
RootStrategyImplementationTypedInterfaceObject_swigregister = _simulation.RootStrategyImplementationTypedInterfaceObject_swigregister
RootStrategyImplementationTypedInterfaceObject_swigregister(RootStrategyImplementationTypedInterfaceObject)

class RootStrategy(RootStrategyImplementationTypedInterfaceObject):
    __swig_setmethods__ = {}
    for _s in [RootStrategyImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RootStrategy, name, value)
    __swig_getmethods__ = {}
    for _s in [RootStrategyImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RootStrategy, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RootStrategy_getClassName(self)

    def solve(self, *args): return _simulation.RootStrategy_solve(self, *args)
    def setSolver(self, *args): return _simulation.RootStrategy_setSolver(self, *args)
    def getSolver(self): return _simulation.RootStrategy_getSolver(self)
    def setMaximumDistance(self, *args): return _simulation.RootStrategy_setMaximumDistance(self, *args)
    def getMaximumDistance(self): return _simulation.RootStrategy_getMaximumDistance(self)
    def setStepSize(self, *args): return _simulation.RootStrategy_setStepSize(self, *args)
    def getStepSize(self): return _simulation.RootStrategy_getStepSize(self)
    def setOriginValue(self, *args): return _simulation.RootStrategy_setOriginValue(self, *args)
    def getOriginValue(self): return _simulation.RootStrategy_getOriginValue(self)
    def __repr__(self): return _simulation.RootStrategy___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_RootStrategy(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RootStrategy
    __del__ = lambda self : None;
RootStrategy_swigregister = _simulation.RootStrategy_swigregister
RootStrategy_swigregister(RootStrategy)

class SamplingStrategyImplementation(openturns.common.PersistentObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SamplingStrategyImplementation, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SamplingStrategyImplementation, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SamplingStrategyImplementation_getClassName(self)

    def generate(self): return _simulation.SamplingStrategyImplementation_generate(self)
    def getUniformUnitVectorRealization(self, *args): return _simulation.SamplingStrategyImplementation_getUniformUnitVectorRealization(self, *args)
    def setDimension(self, *args): return _simulation.SamplingStrategyImplementation_setDimension(self, *args)
    def getDimension(self): return _simulation.SamplingStrategyImplementation_getDimension(self)
    def __repr__(self): return _simulation.SamplingStrategyImplementation___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_SamplingStrategyImplementation(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SamplingStrategyImplementation
    __del__ = lambda self : None;
SamplingStrategyImplementation_swigregister = _simulation.SamplingStrategyImplementation_swigregister
SamplingStrategyImplementation_swigregister(SamplingStrategyImplementation)

class SamplingStrategyImplementationTypedInterfaceObject(openturns.common.InterfaceObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SamplingStrategyImplementationTypedInterfaceObject, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.InterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SamplingStrategyImplementationTypedInterfaceObject, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        this = _simulation.new_SamplingStrategyImplementationTypedInterfaceObject(*args)
        try: self.this.append(this)
        except: self.this = this
    def getImplementation(self, *args):
        """
        Accessor to the underlying implementation.

        Returns
        -------
        impl : Implementation
            The implementation class.
        """
        return _simulation.SamplingStrategyImplementationTypedInterfaceObject_getImplementation(self, *args)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _simulation.SamplingStrategyImplementationTypedInterfaceObject_setName(self, *args)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _simulation.SamplingStrategyImplementationTypedInterfaceObject_getName(self)

    def __eq__(self, *args): return _simulation.SamplingStrategyImplementationTypedInterfaceObject___eq__(self, *args)
    __swig_destroy__ = _simulation.delete_SamplingStrategyImplementationTypedInterfaceObject
    __del__ = lambda self : None;
SamplingStrategyImplementationTypedInterfaceObject_swigregister = _simulation.SamplingStrategyImplementationTypedInterfaceObject_swigregister
SamplingStrategyImplementationTypedInterfaceObject_swigregister(SamplingStrategyImplementationTypedInterfaceObject)

class SamplingStrategy(SamplingStrategyImplementationTypedInterfaceObject):
    __swig_setmethods__ = {}
    for _s in [SamplingStrategyImplementationTypedInterfaceObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SamplingStrategy, name, value)
    __swig_getmethods__ = {}
    for _s in [SamplingStrategyImplementationTypedInterfaceObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SamplingStrategy, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SamplingStrategy_getClassName(self)

    def generate(self): return _simulation.SamplingStrategy_generate(self)
    def setDimension(self, *args): return _simulation.SamplingStrategy_setDimension(self, *args)
    def getDimension(self): return _simulation.SamplingStrategy_getDimension(self)
    def __repr__(self): return _simulation.SamplingStrategy___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_SamplingStrategy(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SamplingStrategy
    __del__ = lambda self : None;
SamplingStrategy_swigregister = _simulation.SamplingStrategy_swigregister
SamplingStrategy_swigregister(SamplingStrategy)

class DirectionalSampling(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, DirectionalSampling, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, DirectionalSampling, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.DirectionalSampling_getClassName(self)

    def setRootStrategy(self, *args): return _simulation.DirectionalSampling_setRootStrategy(self, *args)
    def getRootStrategy(self): return _simulation.DirectionalSampling_getRootStrategy(self)
    def setSamplingStrategy(self, *args): return _simulation.DirectionalSampling_setSamplingStrategy(self, *args)
    def getSamplingStrategy(self): return _simulation.DirectionalSampling_getSamplingStrategy(self)
    def __repr__(self): return _simulation.DirectionalSampling___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_DirectionalSampling(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_DirectionalSampling
    __del__ = lambda self : None;
DirectionalSampling_swigregister = _simulation.DirectionalSampling_swigregister
DirectionalSampling_swigregister(DirectionalSampling)

class OrthogonalDirection(SamplingStrategyImplementation):
    __swig_setmethods__ = {}
    for _s in [SamplingStrategyImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, OrthogonalDirection, name, value)
    __swig_getmethods__ = {}
    for _s in [SamplingStrategyImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, OrthogonalDirection, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.OrthogonalDirection_getClassName(self)

    def generate(self): return _simulation.OrthogonalDirection_generate(self)
    def __repr__(self): return _simulation.OrthogonalDirection___repr__(self)
    def getUniformOrientationRealization(self): return _simulation.OrthogonalDirection_getUniformOrientationRealization(self)
    def __init__(self, *args): 
        this = _simulation.new_OrthogonalDirection(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_OrthogonalDirection
    __del__ = lambda self : None;
OrthogonalDirection_swigregister = _simulation.OrthogonalDirection_swigregister
OrthogonalDirection_swigregister(OrthogonalDirection)

class RandomDirection(SamplingStrategyImplementation):
    __swig_setmethods__ = {}
    for _s in [SamplingStrategyImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RandomDirection, name, value)
    __swig_getmethods__ = {}
    for _s in [SamplingStrategyImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RandomDirection, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RandomDirection_getClassName(self)

    def generate(self): return _simulation.RandomDirection_generate(self)
    def __repr__(self): return _simulation.RandomDirection___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_RandomDirection(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RandomDirection
    __del__ = lambda self : None;
RandomDirection_swigregister = _simulation.RandomDirection_swigregister
RandomDirection_swigregister(RandomDirection)

class MediumSafe(RootStrategyImplementation):
    __swig_setmethods__ = {}
    for _s in [RootStrategyImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MediumSafe, name, value)
    __swig_getmethods__ = {}
    for _s in [RootStrategyImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MediumSafe, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.MediumSafe_getClassName(self)

    def solve(self, *args): return _simulation.MediumSafe_solve(self, *args)
    def __repr__(self): return _simulation.MediumSafe___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_MediumSafe(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_MediumSafe
    __del__ = lambda self : None;
MediumSafe_swigregister = _simulation.MediumSafe_swigregister
MediumSafe_swigregister(MediumSafe)

class RiskyAndFast(RootStrategyImplementation):
    __swig_setmethods__ = {}
    for _s in [RootStrategyImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RiskyAndFast, name, value)
    __swig_getmethods__ = {}
    for _s in [RootStrategyImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RiskyAndFast, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RiskyAndFast_getClassName(self)

    def solve(self, *args): return _simulation.RiskyAndFast_solve(self, *args)
    def __repr__(self): return _simulation.RiskyAndFast___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_RiskyAndFast(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RiskyAndFast
    __del__ = lambda self : None;
RiskyAndFast_swigregister = _simulation.RiskyAndFast_swigregister
RiskyAndFast_swigregister(RiskyAndFast)

class SafeAndSlow(RootStrategyImplementation):
    __swig_setmethods__ = {}
    for _s in [RootStrategyImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SafeAndSlow, name, value)
    __swig_getmethods__ = {}
    for _s in [RootStrategyImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SafeAndSlow, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SafeAndSlow_getClassName(self)

    def solve(self, *args): return _simulation.SafeAndSlow_solve(self, *args)
    def __repr__(self): return _simulation.SafeAndSlow___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_SafeAndSlow(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SafeAndSlow
    __del__ = lambda self : None;
SafeAndSlow_swigregister = _simulation.SafeAndSlow_swigregister
SafeAndSlow_swigregister(SafeAndSlow)

class QuasiMonteCarlo(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, QuasiMonteCarlo, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, QuasiMonteCarlo, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.QuasiMonteCarlo_getClassName(self)

    def __repr__(self): return _simulation.QuasiMonteCarlo___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_QuasiMonteCarlo(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_QuasiMonteCarlo
    __del__ = lambda self : None;
QuasiMonteCarlo_swigregister = _simulation.QuasiMonteCarlo_swigregister
QuasiMonteCarlo_swigregister(QuasiMonteCarlo)

class RandomizedQuasiMonteCarlo(Simulation):
    __swig_setmethods__ = {}
    for _s in [Simulation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, RandomizedQuasiMonteCarlo, name, value)
    __swig_getmethods__ = {}
    for _s in [Simulation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, RandomizedQuasiMonteCarlo, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RandomizedQuasiMonteCarlo_getClassName(self)

    def __repr__(self): return _simulation.RandomizedQuasiMonteCarlo___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_RandomizedQuasiMonteCarlo(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RandomizedQuasiMonteCarlo
    __del__ = lambda self : None;
RandomizedQuasiMonteCarlo_swigregister = _simulation.RandomizedQuasiMonteCarlo_swigregister
RandomizedQuasiMonteCarlo_swigregister(RandomizedQuasiMonteCarlo)

class QuasiMonteCarloResult(SimulationResultImplementation):
    __swig_setmethods__ = {}
    for _s in [SimulationResultImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, QuasiMonteCarloResult, name, value)
    __swig_getmethods__ = {}
    for _s in [SimulationResultImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, QuasiMonteCarloResult, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.QuasiMonteCarloResult_getClassName(self)

    def getCoefficientOfVariation(self):
        """
        Accessor to the coefficient of variation.

        Returns
        -------
        coefficient : float
            Coefficient of variation of the simulated sample which is equal to
            :math:`\\sqrt{Var_e} / P_e` with :math:`Var_e` the variance estimate and
            :math:`P_e` the probability estimate.
        """
        return _simulation.QuasiMonteCarloResult_getCoefficientOfVariation(self)

    def getStandardDeviation(self):
        """
        Accessor to the standard deviation.

        Returns
        -------
        sigma : float
            Standard deviation of the estimator at the end of the simulation.
        """
        return _simulation.QuasiMonteCarloResult_getStandardDeviation(self)

    def getConfidenceLength(self, *args):
        """
        Accessor to the confidence length.

        Parameters
        ----------
        level : float, :math:`level \\in ]0, 1[`
            Confidence level. By default, it is :math:`0.95`.

        Returns
        -------
        confidenceLength : float
            Length of the confidence interval at the confidence level *level*.
        """
        return _simulation.QuasiMonteCarloResult_getConfidenceLength(self, *args)

    def __repr__(self): return _simulation.QuasiMonteCarloResult___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_QuasiMonteCarloResult(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_QuasiMonteCarloResult
    __del__ = lambda self : None;
QuasiMonteCarloResult_swigregister = _simulation.QuasiMonteCarloResult_swigregister
QuasiMonteCarloResult_swigregister(QuasiMonteCarloResult)

class SimulationSensitivityAnalysis(openturns.common.PersistentObject):
    __swig_setmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, SimulationSensitivityAnalysis, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.common.PersistentObject]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, SimulationSensitivityAnalysis, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SimulationSensitivityAnalysis_getClassName(self)

    def computeMeanPointInEventDomain(self, *args): return _simulation.SimulationSensitivityAnalysis_computeMeanPointInEventDomain(self, *args)
    def computeImportanceFactors(self, *args): return _simulation.SimulationSensitivityAnalysis_computeImportanceFactors(self, *args)
    def drawImportanceFactors(self): return _simulation.SimulationSensitivityAnalysis_drawImportanceFactors(self)
    def drawImportanceFactorsRange(self, *args): return _simulation.SimulationSensitivityAnalysis_drawImportanceFactorsRange(self, *args)
    def getInputSample(self): return _simulation.SimulationSensitivityAnalysis_getInputSample(self)
    def getOutputSample(self): return _simulation.SimulationSensitivityAnalysis_getOutputSample(self)
    def getThreshold(self): return _simulation.SimulationSensitivityAnalysis_getThreshold(self)
    def setThreshold(self, *args): return _simulation.SimulationSensitivityAnalysis_setThreshold(self, *args)
    def getTransformation(self): return _simulation.SimulationSensitivityAnalysis_getTransformation(self)
    def getComparisonOperator(self): return _simulation.SimulationSensitivityAnalysis_getComparisonOperator(self)
    def setComparisonOperator(self, *args): return _simulation.SimulationSensitivityAnalysis_setComparisonOperator(self, *args)
    def __repr__(self): return _simulation.SimulationSensitivityAnalysis___repr__(self)
    def __init__(self, *args): 
        this = _simulation.new_SimulationSensitivityAnalysis(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SimulationSensitivityAnalysis
    __del__ = lambda self : None;
SimulationSensitivityAnalysis_swigregister = _simulation.SimulationSensitivityAnalysis_swigregister
SimulationSensitivityAnalysis_swigregister(SimulationSensitivityAnalysis)

class RootStrategyImplementationPointer(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, RootStrategyImplementationPointer, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, RootStrategyImplementationPointer, name)
    __swig_setmethods__["ptr_"] = _simulation.RootStrategyImplementationPointer_ptr__set
    __swig_getmethods__["ptr_"] = _simulation.RootStrategyImplementationPointer_ptr__get
    if _newclass:ptr_ = _swig_property(_simulation.RootStrategyImplementationPointer_ptr__get, _simulation.RootStrategyImplementationPointer_ptr__set)
    def __init__(self, *args): 
        this = _simulation.new_RootStrategyImplementationPointer(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_RootStrategyImplementationPointer
    __del__ = lambda self : None;
    def reset(self): return _simulation.RootStrategyImplementationPointer_reset(self)
    def __ref__(self, *args): return _simulation.RootStrategyImplementationPointer___ref__(self, *args)
    def __deref__(self): return _simulation.RootStrategyImplementationPointer___deref__(self)
    def isNull(self): return _simulation.RootStrategyImplementationPointer_isNull(self)
    def __nonzero__(self):
        return _simulation.RootStrategyImplementationPointer___nonzero__(self)
    __bool__ = __nonzero__


    def get(self): return _simulation.RootStrategyImplementationPointer_get(self)
    def getImplementation(self): return _simulation.RootStrategyImplementationPointer_getImplementation(self)
    def unique(self): return _simulation.RootStrategyImplementationPointer_unique(self)
    def use_count(self): return _simulation.RootStrategyImplementationPointer_use_count(self)
    def swap(self, *args): return _simulation.RootStrategyImplementationPointer_swap(self, *args)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.RootStrategyImplementationPointer_getClassName(self)

    def solve(self, *args): return _simulation.RootStrategyImplementationPointer_solve(self, *args)
    def setSolver(self, *args): return _simulation.RootStrategyImplementationPointer_setSolver(self, *args)
    def getSolver(self): return _simulation.RootStrategyImplementationPointer_getSolver(self)
    def setMaximumDistance(self, *args): return _simulation.RootStrategyImplementationPointer_setMaximumDistance(self, *args)
    def getMaximumDistance(self): return _simulation.RootStrategyImplementationPointer_getMaximumDistance(self)
    def setStepSize(self, *args): return _simulation.RootStrategyImplementationPointer_setStepSize(self, *args)
    def getStepSize(self): return _simulation.RootStrategyImplementationPointer_getStepSize(self)
    def setOriginValue(self, *args): return _simulation.RootStrategyImplementationPointer_setOriginValue(self, *args)
    def getOriginValue(self): return _simulation.RootStrategyImplementationPointer_getOriginValue(self)
    def __repr__(self): return _simulation.RootStrategyImplementationPointer___repr__(self)
    def __eq__(self, *args): return _simulation.RootStrategyImplementationPointer___eq__(self, *args)
    def __ne__(self, *args): return _simulation.RootStrategyImplementationPointer___ne__(self, *args)
    def __str__(self, offset=""): return _simulation.RootStrategyImplementationPointer___str__(self, offset)
    def getId(self):
        """
        Accessor to the object's id.

        Returns
        -------
        id : int
           Internal unique identifier.
        """
        return _simulation.RootStrategyImplementationPointer_getId(self)

    def setShadowedId(self, *args):
        """
        Accessor to the object's shadowed id.

        Parameters
        ----------
        id : int
            Internal unique identifier.
        """
        return _simulation.RootStrategyImplementationPointer_setShadowedId(self, *args)

    def getShadowedId(self):
        """
        Accessor to the object's shadowed id.

        Returns
        -------
        id : int
            Internal unique identifier.
        """
        return _simulation.RootStrategyImplementationPointer_getShadowedId(self)

    def setVisibility(self, *args):
        """
        Accessor to the object's visibility state.

        Parameters
        ----------
        visible : bool
            Visibility flag.
        """
        return _simulation.RootStrategyImplementationPointer_setVisibility(self, *args)

    def getVisibility(self):
        """
        Accessor to the object's visibility state.

        Returns
        -------
        visible : bool
            Visibility flag.
        """
        return _simulation.RootStrategyImplementationPointer_getVisibility(self)

    def hasName(self):
        """
        Test if the object is named.

        Returns
        -------
        hasName : bool
            True if the name is not empty.
        """
        return _simulation.RootStrategyImplementationPointer_hasName(self)

    def hasVisibleName(self):
        """
        Test if the object has a distinghishable name.

        Returns
        -------
        hasVisibleName : bool
            True if the name is not empty and not the default one.
        """
        return _simulation.RootStrategyImplementationPointer_hasVisibleName(self)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _simulation.RootStrategyImplementationPointer_getName(self)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _simulation.RootStrategyImplementationPointer_setName(self, *args)

RootStrategyImplementationPointer_swigregister = _simulation.RootStrategyImplementationPointer_swigregister
RootStrategyImplementationPointer_swigregister(RootStrategyImplementationPointer)

class SamplingStrategyImplementationPointer(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SamplingStrategyImplementationPointer, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SamplingStrategyImplementationPointer, name)
    __swig_setmethods__["ptr_"] = _simulation.SamplingStrategyImplementationPointer_ptr__set
    __swig_getmethods__["ptr_"] = _simulation.SamplingStrategyImplementationPointer_ptr__get
    if _newclass:ptr_ = _swig_property(_simulation.SamplingStrategyImplementationPointer_ptr__get, _simulation.SamplingStrategyImplementationPointer_ptr__set)
    def __init__(self, *args): 
        this = _simulation.new_SamplingStrategyImplementationPointer(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _simulation.delete_SamplingStrategyImplementationPointer
    __del__ = lambda self : None;
    def reset(self): return _simulation.SamplingStrategyImplementationPointer_reset(self)
    def __ref__(self, *args): return _simulation.SamplingStrategyImplementationPointer___ref__(self, *args)
    def __deref__(self): return _simulation.SamplingStrategyImplementationPointer___deref__(self)
    def isNull(self): return _simulation.SamplingStrategyImplementationPointer_isNull(self)
    def __nonzero__(self):
        return _simulation.SamplingStrategyImplementationPointer___nonzero__(self)
    __bool__ = __nonzero__


    def get(self): return _simulation.SamplingStrategyImplementationPointer_get(self)
    def getImplementation(self): return _simulation.SamplingStrategyImplementationPointer_getImplementation(self)
    def unique(self): return _simulation.SamplingStrategyImplementationPointer_unique(self)
    def use_count(self): return _simulation.SamplingStrategyImplementationPointer_use_count(self)
    def swap(self, *args): return _simulation.SamplingStrategyImplementationPointer_swap(self, *args)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _simulation.SamplingStrategyImplementationPointer_getClassName(self)

    def generate(self): return _simulation.SamplingStrategyImplementationPointer_generate(self)
    def getUniformUnitVectorRealization(self, *args): return _simulation.SamplingStrategyImplementationPointer_getUniformUnitVectorRealization(self, *args)
    def setDimension(self, *args): return _simulation.SamplingStrategyImplementationPointer_setDimension(self, *args)
    def getDimension(self): return _simulation.SamplingStrategyImplementationPointer_getDimension(self)
    def __repr__(self): return _simulation.SamplingStrategyImplementationPointer___repr__(self)
    def __eq__(self, *args): return _simulation.SamplingStrategyImplementationPointer___eq__(self, *args)
    def __ne__(self, *args): return _simulation.SamplingStrategyImplementationPointer___ne__(self, *args)
    def __str__(self, offset=""): return _simulation.SamplingStrategyImplementationPointer___str__(self, offset)
    def getId(self):
        """
        Accessor to the object's id.

        Returns
        -------
        id : int
           Internal unique identifier.
        """
        return _simulation.SamplingStrategyImplementationPointer_getId(self)

    def setShadowedId(self, *args):
        """
        Accessor to the object's shadowed id.

        Parameters
        ----------
        id : int
            Internal unique identifier.
        """
        return _simulation.SamplingStrategyImplementationPointer_setShadowedId(self, *args)

    def getShadowedId(self):
        """
        Accessor to the object's shadowed id.

        Returns
        -------
        id : int
            Internal unique identifier.
        """
        return _simulation.SamplingStrategyImplementationPointer_getShadowedId(self)

    def setVisibility(self, *args):
        """
        Accessor to the object's visibility state.

        Parameters
        ----------
        visible : bool
            Visibility flag.
        """
        return _simulation.SamplingStrategyImplementationPointer_setVisibility(self, *args)

    def getVisibility(self):
        """
        Accessor to the object's visibility state.

        Returns
        -------
        visible : bool
            Visibility flag.
        """
        return _simulation.SamplingStrategyImplementationPointer_getVisibility(self)

    def hasName(self):
        """
        Test if the object is named.

        Returns
        -------
        hasName : bool
            True if the name is not empty.
        """
        return _simulation.SamplingStrategyImplementationPointer_hasName(self)

    def hasVisibleName(self):
        """
        Test if the object has a distinghishable name.

        Returns
        -------
        hasVisibleName : bool
            True if the name is not empty and not the default one.
        """
        return _simulation.SamplingStrategyImplementationPointer_hasVisibleName(self)

    def getName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        name : string
            The name of the object.
        """
        return _simulation.SamplingStrategyImplementationPointer_getName(self)

    def setName(self, *args):
        """
        Accessor to the object's name.

        Parameters
        ----------
        name : string
            The name of the object.
        """
        return _simulation.SamplingStrategyImplementationPointer_setName(self, *args)

SamplingStrategyImplementationPointer_swigregister = _simulation.SamplingStrategyImplementationPointer_swigregister
SamplingStrategyImplementationPointer_swigregister(SamplingStrategyImplementationPointer)

# This file is compatible with both classic and new-style classes.