This file is indexed.

/usr/lib/python3/dist-packages/openturns/weightedexperiment.py is in python3-openturns 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.




"""
Weighted designs of experiments.
"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_weightedexperiment', [dirname(__file__)])
        except ImportError:
            import _weightedexperiment
            return _weightedexperiment
        if fp is not None:
            try:
                _mod = imp.load_module('_weightedexperiment', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _weightedexperiment = swig_import_helper()
    del swig_import_helper
else:
    import _weightedexperiment
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


class SwigPyIterator(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _weightedexperiment.delete_SwigPyIterator
    __del__ = lambda self : None;
    def value(self): return _weightedexperiment.SwigPyIterator_value(self)
    def incr(self, n=1): return _weightedexperiment.SwigPyIterator_incr(self, n)
    def decr(self, n=1): return _weightedexperiment.SwigPyIterator_decr(self, n)
    def distance(self, *args): return _weightedexperiment.SwigPyIterator_distance(self, *args)
    def equal(self, *args): return _weightedexperiment.SwigPyIterator_equal(self, *args)
    def copy(self): return _weightedexperiment.SwigPyIterator_copy(self)
    def next(self): return _weightedexperiment.SwigPyIterator_next(self)
    def __next__(self): return _weightedexperiment.SwigPyIterator___next__(self)
    def previous(self): return _weightedexperiment.SwigPyIterator_previous(self)
    def advance(self, *args): return _weightedexperiment.SwigPyIterator_advance(self, *args)
    def __eq__(self, *args): return _weightedexperiment.SwigPyIterator___eq__(self, *args)
    def __ne__(self, *args): return _weightedexperiment.SwigPyIterator___ne__(self, *args)
    def __iadd__(self, *args): return _weightedexperiment.SwigPyIterator___iadd__(self, *args)
    def __isub__(self, *args): return _weightedexperiment.SwigPyIterator___isub__(self, *args)
    def __add__(self, *args): return _weightedexperiment.SwigPyIterator___add__(self, *args)
    def __sub__(self, *args): return _weightedexperiment.SwigPyIterator___sub__(self, *args)
    def __iter__(self): return self
SwigPyIterator_swigregister = _weightedexperiment.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)

GCC_VERSION = _weightedexperiment.GCC_VERSION
class TestFailed:
    """TestFailed is used to raise an uniform exception in tests."""

    __type = "TestFailed"

    def __init__(self, reason=""):
        self.reason = reason

    def type(self):
        return TestFailed.__type

    def what(self):
        return self.reason

    def __str__(self):
        return TestFailed.__type + ": " + self.reason

    def __lshift__(self, ch):
        self.reason += ch
        return self

import openturns.base
import openturns.common
import openturns.wrapper
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
class WeightedExperiment(openturns.experiment.ExperimentImplementation):
    """
    Weighted experiment.

    Available constructor:
        WeightedExperiment(`distribution=ot.Uniform(), size=100`)

    Parameters
    ----------
    distribution : :class:`~openturns.Distribution`
        Distribution :math:`\\mu` used to generate the set of input data.
    size : positive int
        Number :math:`cardI` of points that will be generated in the experiment.

    Notes
    -----
    WeightedExperiment is used to generate the points :math:`\\Xi_i` so that the
    mean :math:`E_{\\mu}` is approximated as follows:

    .. math::

        E_{\\mu} \\left[ f(\\vect{Z}) \\right] \\simeq \\sum_{i \\in I} \\omega_i f(\\Xi_i)

    where :math:`\\mu` is a distribution, :math:`f` is a function :math:`L_1(\\mu)`
    and :math:`\\omega_i` are the weights associated with the points. By default,
    all the weights are equal to :math:`1/cardI`.

    A WeightedExperiment object can be created only through its derived classes
    which are distributed in three groups:

    1. The first category is made up of the random patterns, where the set of input
       data is generated from the joint distribution of the input random vector,
       according to these sampling techniques:

       - :class:`Monte Carlo <openturns.MonteCarloExperiment>`

       - :class:`LHS <openturns.LHSExperiment>`

       - :class:`Bootstrap <openturns.BootstrapExperiment>`

       - :class:`Importance Sampling <openturns.ImportanceSamplingExperiment>`

    2. The second category contains the :class:`low discrepancy sequences
       <openturns.LowDiscrepancySequence>`. OpenTURNS proposes the Faure, Halton,
       Haselgrove, Reverse Halton and Sobol sequences.

    3. The third category consists of deterministic patterns:

       - :class:`Gauss product <openturns.GaussProductExperiment>`

       - :class:`~openturns.FixedExperiment`

       - :class:`~openturns.LowDiscrepancyExperiment`
    """
    __swig_setmethods__ = {}
    for _s in [openturns.experiment.ExperimentImplementation]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, WeightedExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.experiment.ExperimentImplementation]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, WeightedExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.WeightedExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.WeightedExperiment___repr__(self)
    def setDistribution(self, *args):
        """
        Accessor to the distribution.

        Parameters
        ----------
        distribution : :class:`~openturns.Distribution`
            Distribution used to generate the set of input data.
        """
        return _weightedexperiment.WeightedExperiment_setDistribution(self, *args)

    def getDistribution(self):
        """
        Accessor to the distribution.

        Returns
        -------
        distribution : :class:`~openturns.Distribution`
            Distribution used to generate the set of input data.
        """
        return _weightedexperiment.WeightedExperiment_getDistribution(self)

    def setSize(self, *args):
        """
        Accessor to the size of the generated sample.

        Parameters
        ----------
        size : positive int
            Number :math:`cardI` of points constituting the design of experiments.
        """
        return _weightedexperiment.WeightedExperiment_setSize(self, *args)

    def getSize(self):
        """
        Accessor to the size of the generated sample.

        Returns
        -------
        size : positive int
            Number :math:`cardI` of points constituting the design of experiments.
        """
        return _weightedexperiment.WeightedExperiment_getSize(self)

    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.WeightedExperiment_generate(self)

    def generateWithWeights(self):
        """
        Generate points and their associated weight according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            The points which constitute the design of experiments. The sampling method
            is defined by the nature of the experiment.
        weights : float sequence of size :math:`cardI`
            Weights :math:`(\\omega_i)_{i \\in I}` associated with the points. By default,
            all the weights are equal to :math:`1/cardI`.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample, weights = myExperiment.generateWithWeights()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        >>> print(weights)
        [0.2,0.2,0.2,0.2,0.2]
        """
        return _weightedexperiment.WeightedExperiment_generateWithWeights(self)

    def getWeight(self):
        """
        Accessor to the weights associated with the points.

        Returns
        -------
        weights : float sequence of size :math:`cardI`
            Weights :math:`(\\omega_i)_{i \\in I}` associated with the points. By default,
            all the weights are equal to :math:`1/cardI`.
        """
        return _weightedexperiment.WeightedExperiment_getWeight(self)

    def __init__(self, *args): 
        this = _weightedexperiment.new_WeightedExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_WeightedExperiment
    __del__ = lambda self : None;
WeightedExperiment_swigregister = _weightedexperiment.WeightedExperiment_swigregister
WeightedExperiment_swigregister(WeightedExperiment)

class BootstrapExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BootstrapExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BootstrapExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.BootstrapExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.BootstrapExperiment___repr__(self)
    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.BootstrapExperiment_generate(self)

    def __init__(self, *args): 
        this = _weightedexperiment.new_BootstrapExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_BootstrapExperiment
    __del__ = lambda self : None;
BootstrapExperiment_swigregister = _weightedexperiment.BootstrapExperiment_swigregister
BootstrapExperiment_swigregister(BootstrapExperiment)

class FixedExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, FixedExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, FixedExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.FixedExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.FixedExperiment___repr__(self)
    def setDistribution(self, *args):
        """
        Accessor to the distribution.

        Parameters
        ----------
        distribution : :class:`~openturns.Distribution`
            Distribution used to generate the set of input data.
        """
        return _weightedexperiment.FixedExperiment_setDistribution(self, *args)

    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.FixedExperiment_generate(self)

    def __init__(self, *args): 
        this = _weightedexperiment.new_FixedExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_FixedExperiment
    __del__ = lambda self : None;
FixedExperiment_swigregister = _weightedexperiment.FixedExperiment_swigregister
FixedExperiment_swigregister(FixedExperiment)

class GaussProductExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, GaussProductExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, GaussProductExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.GaussProductExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.GaussProductExperiment___repr__(self)
    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.GaussProductExperiment_generate(self)

    def setMarginalDegrees(self, *args): return _weightedexperiment.GaussProductExperiment_setMarginalDegrees(self, *args)
    def getMarginalDegrees(self): return _weightedexperiment.GaussProductExperiment_getMarginalDegrees(self)
    def setDistribution(self, *args):
        """
        Accessor to the distribution.

        Parameters
        ----------
        distribution : :class:`~openturns.Distribution`
            Distribution used to generate the set of input data.
        """
        return _weightedexperiment.GaussProductExperiment_setDistribution(self, *args)

    def __init__(self, *args): 
        this = _weightedexperiment.new_GaussProductExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_GaussProductExperiment
    __del__ = lambda self : None;
GaussProductExperiment_swigregister = _weightedexperiment.GaussProductExperiment_swigregister
GaussProductExperiment_swigregister(GaussProductExperiment)

class ImportanceSamplingExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, ImportanceSamplingExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, ImportanceSamplingExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.ImportanceSamplingExperiment_getClassName(self)

    def getImportanceDistribution(self): return _weightedexperiment.ImportanceSamplingExperiment_getImportanceDistribution(self)
    def __repr__(self): return _weightedexperiment.ImportanceSamplingExperiment___repr__(self)
    def generate(self, *args):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.ImportanceSamplingExperiment_generate(self, *args)

    def __init__(self, *args): 
        this = _weightedexperiment.new_ImportanceSamplingExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_ImportanceSamplingExperiment
    __del__ = lambda self : None;
ImportanceSamplingExperiment_swigregister = _weightedexperiment.ImportanceSamplingExperiment_swigregister
ImportanceSamplingExperiment_swigregister(ImportanceSamplingExperiment)

class LHSExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LHSExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LHSExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.LHSExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.LHSExperiment___repr__(self)
    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.LHSExperiment_generate(self)

    __swig_getmethods__["ComputeShuffle"] = lambda x: _weightedexperiment.LHSExperiment_ComputeShuffle
    if _newclass:ComputeShuffle = staticmethod(_weightedexperiment.LHSExperiment_ComputeShuffle)
    def getShuffle(self): return _weightedexperiment.LHSExperiment_getShuffle(self)
    def setDistribution(self, *args):
        """
        Accessor to the distribution.

        Parameters
        ----------
        distribution : :class:`~openturns.Distribution`
            Distribution used to generate the set of input data.
        """
        return _weightedexperiment.LHSExperiment_setDistribution(self, *args)

    def __init__(self, *args): 
        this = _weightedexperiment.new_LHSExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_LHSExperiment
    __del__ = lambda self : None;
LHSExperiment_swigregister = _weightedexperiment.LHSExperiment_swigregister
LHSExperiment_swigregister(LHSExperiment)

def LHSExperiment_ComputeShuffle(*args):
  return _weightedexperiment.LHSExperiment_ComputeShuffle(*args)
LHSExperiment_ComputeShuffle = _weightedexperiment.LHSExperiment_ComputeShuffle

class LowDiscrepancyExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, LowDiscrepancyExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, LowDiscrepancyExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.LowDiscrepancyExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.LowDiscrepancyExperiment___repr__(self)
    def setDistribution(self, *args):
        """
        Accessor to the distribution.

        Parameters
        ----------
        distribution : :class:`~openturns.Distribution`
            Distribution used to generate the set of input data.
        """
        return _weightedexperiment.LowDiscrepancyExperiment_setDistribution(self, *args)

    def getSequence(self): return _weightedexperiment.LowDiscrepancyExperiment_getSequence(self)
    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.LowDiscrepancyExperiment_generate(self)

    def __init__(self, *args): 
        this = _weightedexperiment.new_LowDiscrepancyExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_LowDiscrepancyExperiment
    __del__ = lambda self : None;
LowDiscrepancyExperiment_swigregister = _weightedexperiment.LowDiscrepancyExperiment_swigregister
LowDiscrepancyExperiment_swigregister(LowDiscrepancyExperiment)

class MonteCarloExperiment(WeightedExperiment):
    __swig_setmethods__ = {}
    for _s in [WeightedExperiment]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MonteCarloExperiment, name, value)
    __swig_getmethods__ = {}
    for _s in [WeightedExperiment]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, MonteCarloExperiment, name)
    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _weightedexperiment.MonteCarloExperiment_getClassName(self)

    def __repr__(self): return _weightedexperiment.MonteCarloExperiment___repr__(self)
    def generate(self):
        """
        Generate points according to the type of the experiment.

        Returns
        -------
        sample : 2D float sequence
            Points :math:`(\\Xi_i)_{i \\in I}` which constitute the design of experiments
            with :math:`card I = size`. The sampling method is defined by the nature of
            the weighted experiment.

        Examples
        --------
        >>> import openturns as ot
        >>> ot.RandomGenerator.SetSeed(0)
        >>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5)
        >>> sample = myExperiment.generate()
        >>> print(sample)
            [ marginal 1 marginal 2 ]
        0 : [  0.608202  -1.26617   ]
        1 : [ -0.438266   1.20548   ]
        2 : [ -2.18139    0.350042  ]
        3 : [ -0.355007   1.43725   ]
        4 : [  0.810668   0.793156  ]
        """
        return _weightedexperiment.MonteCarloExperiment_generate(self)

    def __init__(self, *args): 
        this = _weightedexperiment.new_MonteCarloExperiment(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _weightedexperiment.delete_MonteCarloExperiment
    __del__ = lambda self : None;
MonteCarloExperiment_swigregister = _weightedexperiment.MonteCarloExperiment_swigregister
MonteCarloExperiment_swigregister(MonteCarloExperiment)

# This file is compatible with both classic and new-style classes.