/usr/lib/python3/dist-packages/photutils/psf.py is in python3-photutils 0.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Functions for performing PSF fitting photometry on 2D arrays."""
from __future__ import division
import warnings
import numpy as np
from astropy.modeling.parameters import Parameter
from astropy.utils.exceptions import AstropyUserWarning
from astropy.modeling.fitting import LevMarLSQFitter
from astropy.modeling import Fittable2DModel
from astropy.nddata.utils import extract_array, add_array, subpixel_indices
from .utils import mask_to_mirrored_num
__all__ = ['DiscretePRF', 'create_prf', 'psf_photometry',
'GaussianPSF', 'subtract_psf']
class DiscretePRF(Fittable2DModel):
"""
A discrete PRF model.
The discrete PRF model stores images of the PRF at different subpixel
positions or offsets as a lookup table. The resolution is given by the
subsampling parameter, which states in how many subpixels a pixel is
divided.
The discrete PRF model class in initialized with a 4 dimensional
array, that contains the PRF images at different subpixel positions.
The definition of the axes is as following:
1. Axis: y subpixel position
2. Axis: x subpixel position
3. Axis: y direction of the PRF image
4. Axis: x direction of the PRF image
The total array therefore has the following shape
(subsampling, subsampling, prf_size, prf_size)
Parameters
----------
prf_array : ndarray
Array containing PRF images.
normalize : bool
Normalize PRF images to unity.
subsampling : int, optional
Factor of subsampling. Default = 1.
"""
amplitude = Parameter('amplitude')
x_0 = Parameter('x_0')
y_0 = Parameter('y_0')
linear = True
def __init__(self, prf_array, normalize=True, subsampling=1):
# Array shape and dimension check
if subsampling == 1:
if prf_array.ndim == 2:
prf_array = np.array([[prf_array]])
if prf_array.ndim != 4:
raise TypeError('Array must have 4 dimensions.')
if prf_array.shape[:2] != (subsampling, subsampling):
raise TypeError('Incompatible subsampling and array size')
if np.isnan(prf_array).any():
raise Exception("Array contains NaN values. Can't create PRF.")
# Normalize if requested
if normalize:
for i in range(prf_array.shape[0]):
for j in range(prf_array.shape[1]):
prf_array[i, j] /= prf_array[i, j].sum()
# Set PRF asttributes
self._prf_array = prf_array
self.subsampling = subsampling
constraints = {'fixed': {'x_0': True, 'y_0': True}}
x_0 = 0
y_0 = 0
amplitude = 1
super(DiscretePRF, self).__init__(n_models=1, x_0=x_0, y_0=y_0,
amplitude=amplitude, **constraints)
self.fitter = LevMarLSQFitter()
# Fix position per default
self.x_0.fixed = True
self.y_0.fixed = True
@property
def shape(self):
"""
Shape of the PRF image.
"""
return self._prf_array.shape[-2:]
def evaluate(self, x, y, amplitude, x_0, y_0):
"""
Discrete PRF model evaluation.
Given a certain position and amplitude the corresponding image of
the PSF is chosen and scaled to the amplitude. If x and y are
outside the boundaries of the image, zero will be returned.
Parameters
----------
x : float
x coordinate array in pixel coordinates.
y : float
y coordinate array in pixel coordinates.
amplitude : float
Model amplitude.
x_0 : float
x position of the center of the PRF.
y_0 : float
y position of the center of the PRF.
"""
# Convert x and y to index arrays
x = (x - x_0 + 0.5 + self.shape[1] // 2).astype('int')
y = (y - y_0 + 0.5 + self.shape[0] // 2).astype('int')
# Get subpixel indices
y_sub, x_sub = subpixel_indices((y_0, x_0), self.subsampling)
# Out of boundary masks
x_bound = np.logical_or(x < 0, x >= self.shape[1])
y_bound = np.logical_or(y < 0, y >= self.shape[0])
out_of_bounds = np.logical_or(x_bound, y_bound)
# Set out of boundary indices to zero
x[x_bound] = 0
y[y_bound] = 0
result = amplitude * self._prf_array[int(y_sub), int(x_sub)][y, x]
# Set out of boundary values to zero
result[out_of_bounds] = 0
return result
def fit(self, data, indices):
"""
Fit PSF/PRF to data.
Fits the PSF/PRF to the data and returns the best fitting flux.
If the data contains NaN values or if the source is not completely
contained in the image data the fitting is omitted and a flux of 0
is returned.
For reasons of performance, indices for the data have to be created
outside and passed to the function.
The fit is performed on a slice of the data with the same size as
the PRF.
Parameters
----------
data : ndarray
Array containig image data.
indices : ndarray
Array with indices of the data. As
returned by np.indices(data.shape)
"""
# Extract sub array of the data of the size of the PRF grid
sub_array_data = extract_array(data, self.shape,
(self.y_0.value, self.x_0.value))
# Fit only if PSF is completely contained in the image and no NaN
# values are present
if (sub_array_data.shape == self.shape and
not np.isnan(sub_array_data).any()):
y = extract_array(indices[0], self.shape,
(self.y_0.value, self.x_0.value))
x = extract_array(indices[1], self.shape,
(self.y_0.value, self.x_0.value))
# TODO: It should be discussed whether this is the right
# place to fix the warning. Maybe it should be handled better
# in astropy.modeling.fitting
with warnings.catch_warnings():
warnings.simplefilter("ignore", AstropyUserWarning)
m = self.fitter(self, x, y, sub_array_data)
return m.amplitude.value
else:
return 0
class GaussianPSF(Fittable2DModel):
"""
Symmetrical Gaussian PSF model.
The PSF is evaluated by using the `scipy.special.erf` function
on a fixed grid of the size of 1 pixel to assure flux conservation
on subpixel scale.
Parameters
----------
sigma : float
Width of the Gaussian PSF.
amplitude : float (default 1)
The peak amplitude of the PSF.
x_0 : float (default 0)
Position of the peak in x direction.
y_0 : float (default 0)
Position of the peak in y direction.
Notes
-----
The PSF model is evaluated according to the following formula:
.. math::
f(x, y) =
\\frac{A}{0.02538010595464}
\\left[
\\textnormal{erf} \\left(\\frac{x - x_0 + 0.5}
{\\sqrt{2} \\sigma} \\right) -
\\textnormal{erf} \\left(\\frac{x - x_0 - 0.5}
{\\sqrt{2} \\sigma} \\right)
\\right]
\\left[
\\textnormal{erf} \\left(\\frac{y - y_0 + 0.5}
{\\sqrt{2} \\sigma} \\right) -
\\textnormal{erf} \\left(\\frac{y - y_0 - 0.5}
{\\sqrt{2} \\sigma} \\right)
\\right]
Where ``erf`` denotes the error function and ``A`` is the amplitude.
"""
amplitude = Parameter('amplitude')
x_0 = Parameter('x_0')
y_0 = Parameter('y_0')
sigma = Parameter('sigma')
_erf = None
def __init__(self, sigma, amplitude=1, x_0=0, y_0=0):
if self._erf is None:
from scipy.special import erf
self.__class__._erf = erf
constraints = {'fixed': {'x_0': True, 'y_0': True, 'sigma': True}}
super(GaussianPSF, self).__init__(n_models=1, sigma=sigma,
x_0=x_0, y_0=y_0,
amplitude=amplitude, **constraints)
# Default size is 8 * sigma
self.shape = (int(8 * sigma) + 1, int(8 * sigma) + 1)
self.fitter = LevMarLSQFitter()
# Fix position per default
self.x_0.fixed = True
self.y_0.fixed = True
def evaluate(self, x, y, amplitude, x_0, y_0, sigma):
"""
Model function Gaussian PSF model.
"""
psf = (1.0 *
((self._erf((x - x_0 + 0.5) / (np.sqrt(2) * sigma)) -
self._erf((x - x_0 - 0.5) / (np.sqrt(2) * sigma))) *
(self._erf((y - y_0 + 0.5) / (np.sqrt(2) * sigma)) -
self._erf((y - y_0 - 0.5) / (np.sqrt(2) * sigma)))))
return amplitude * psf / psf.max()
def fit(self, data, indices):
"""
Fit PSF/PRF to data.
Fits the PSF/PRF to the data and returns the best fitting flux.
If the data contains NaN values or if the source is not completely
contained in the image data the fitting is omitted and a flux of 0
is returned.
For reasons of performance, indices for the data have to be created
outside and passed to the function.
The fit is performed on a slice of the data with the same size as
the PRF.
Parameters
----------
data : ndarray
Array containig image data.
indices : ndarray
Array with indices of the data. As
returned by np.indices(data.shape)
Returns
-------
flux : float
Best fit flux value. Returns flux = 0 if PSF is not completely
contained in the image or if NaN values are present.
"""
# Set position
position = (self.y_0.value, self.x_0.value)
# Extract sub array with data of interest
sub_array_data = extract_array(data, self.shape, position)
# Fit only if PSF is completely contained in the image and no NaN
# values are present
if (sub_array_data.shape == self.shape and
not np.isnan(sub_array_data).any()):
y = extract_array(indices[0], self.shape, position)
x = extract_array(indices[1], self.shape, position)
m = self.fitter(self, x, y, sub_array_data)
return m.amplitude.value
else:
return 0
def psf_photometry(data, positions, psf, mask=None, mode='sequential',
tune_coordinates=False):
"""
Perform PSF/PRF photometry on the data.
Given a PSF or PRF model, the model is fitted simultaneously or
sequentially to the given positions to obtain an estimate of the
flux. If required, coordinates are also tuned to match best the data.
If the data contains NaN values or the PSF/PRF is not completely
contained in the image, a flux of zero is returned.
Parameters
----------
data : ndarray
Image data array
positions : List or array
List of positions in pixel coordinates
where to fit the PSF/PRF.
psf : `photutils.psf.DiscretePRF` or `photutils.psf.GaussianPSF`
PSF/PRF model to fit to the data.
mask : ndarray, optional
Mask to be applied to the data.
mode : {'sequential', 'simultaneous'}
One of the following modes to do PSF/PRF photometry:
* 'simultaneous'
Fit PSF/PRF simultaneous to all given positions.
* 'sequential' (default)
Fit PSF/PRF one after another to the given positions.
tune_coordinates : boolean
If ``True`` the peak position of the PSF will be fit, if ``False``,
it is frozen to the input value.
Examples
--------
See `Spitzer PSF Photometry <http://nbviewer.ipython.org/gist/adonath/
6550989/PSFPhotometrySpitzer.ipynb>`_ for a short tutorial.
"""
# Check input array type and dimension.
if np.iscomplexobj(data):
raise TypeError('Complex type not supported')
if data.ndim != 2:
raise ValueError('{0}-d array not supported. '
'Only 2-d arrays supported.'.format(data.ndim))
# Fit coordinates if requested
if tune_coordinates:
psf.fixed['x_0'] = False
psf.fixed['y_0'] = False
else:
psf.fixed['x_0'] = True
psf.fixed['y_0'] = True
# Actual photometry
result = np.array([])
indices = np.indices(data.shape)
if mode == 'simultaneous':
raise NotImplementedError('Simultaneous mode not implemented')
elif mode == 'sequential':
for position in positions:
psf.x_0, psf.y_0 = position
flux = psf.fit(data, indices)
result = np.append(result, flux)
else:
raise Exception('Invalid photometry mode.')
return result
def create_prf(data, positions, size, fluxes=None, mask=None, mode='mean',
subsampling=1, fix_nan=False):
"""
Estimate point response function (PRF) from image data.
Given a list of positions and size this function estimates an image of
the PRF by extracting and combining the individual PRFs from the given
positions. Different modes of combining are available.
NaN values are either ignored by passing a mask or can be replaced by
the mirrored value with respect to the center of the PRF.
Furthermore it is possible to specify fluxes to have a correct
normalization of the individual PRFs. Otherwise the flux is estimated from
a quadratic aperture of the same size as the PRF image.
Parameters
----------
data : array
Data array
positions : List or array
List of pixel coordinate source positions to use in creating the PRF.
size : odd int
Size of the quadratic PRF image in pixels.
mask : bool array, optional
Boolean array to mask out bad values.
fluxes : array, optional
Object fluxes to normalize extracted PRFs.
mode : {'mean', 'median'}
One of the following modes to combine the extracted PRFs:
* 'mean'
Take the pixelwise mean of the extracted PRFs.
* 'median'
Take the pixelwise median of the extracted PRFs.
subsampling : int
Factor of subsampling of the PRF (default = 1).
fix_nan : bool
Fix NaN values in the data by replacing it with the
mirrored value. Assuming that the PRF is symmetrical.
Returns
-------
prf : `photutils.psf.DiscretePRF`
Discrete PRF model estimated from data.
Notes
-----
In Astronomy different definitions of Point Spread Function (PSF) and
Point Response Function (PRF) are used. Here we assume that the PRF is
an image of a point source after discretization e.g. with a CCD. This
definition is equivalent to the `Spitzer definiton of the PRF
<http://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/mopex/mopexusersguide/89/>`_.
References
----------
`Spitzer PSF vs. PRF
<http://irsa.ipac.caltech.edu/data/SPITZER/docs/files/spitzer/PRF_vs_PSF.pdf>`_
`Kepler PSF calibration
<http://keplerscience.arc.nasa.gov/CalibrationPSF.shtml>`_
`The Kepler Pixel Response Function
<http://adsabs.harvard.edu/abs/2010ApJ...713L..97B>`_
"""
# Check input array type and dimension.
if np.iscomplexobj(data):
raise TypeError('Complex type not supported')
if data.ndim != 2:
raise ValueError('{0}-d array not supported. '
'Only 2-d arrays supported.'.format(data.ndim))
if size % 2 == 0:
raise TypeError("Size must be odd.")
if fluxes is not None and len(fluxes) != len(positions):
raise TypeError("Position and flux arrays must be of equal length.")
if mask is None:
mask = np.isnan(data)
if isinstance(positions, (list, tuple)):
positions = np.array(positions)
if isinstance(fluxes, (list, tuple)):
fluxes = np.array(fluxes)
if mode == 'mean':
combine = np.ma.mean
elif mode == 'median':
combine = np.ma.median
else:
raise Exception('Invalid mode to combine prfs.')
data_internal = np.ma.array(data=data, mask=mask)
prf_model = np.ndarray(shape=(subsampling, subsampling, size, size))
positions_subpixel_indices = np.array([subpixel_indices(_, subsampling)
for _ in positions], dtype=np.int)
for i in range(subsampling):
for j in range(subsampling):
extracted_sub_prfs = []
sub_prf_indices = np.all(positions_subpixel_indices == [j, i],
axis=1)
positions_sub_prfs = positions[sub_prf_indices]
for k, position in enumerate(positions_sub_prfs):
x, y = position
extracted_prf = extract_array(data_internal, (size, size),
(y, x))
# Check shape to exclude incomplete PRFs at the boundaries
# of the image
if (extracted_prf.shape == (size, size) and
np.ma.sum(extracted_prf) != 0):
# Replace NaN values by mirrored value, with respect
# to the prf's center
if fix_nan:
prf_nan = extracted_prf.mask
if prf_nan.any():
if (prf_nan.sum() > 3 or
prf_nan[size // 2, size // 2]):
continue
else:
extracted_prf = mask_to_mirrored_num(
extracted_prf, prf_nan,
(size // 2, size // 2))
# Normalize and add extracted PRF to data cube
if fluxes is None:
extracted_prf_norm = (np.ma.copy(extracted_prf) /
np.ma.sum(extracted_prf))
else:
fluxes_sub_prfs = fluxes[sub_prf_indices]
extracted_prf_norm = (np.ma.copy(extracted_prf) /
fluxes_sub_prfs[k])
extracted_sub_prfs.append(extracted_prf_norm)
else:
continue
prf_model[i, j] = np.ma.getdata(
combine(np.ma.dstack(extracted_sub_prfs), axis=2))
return DiscretePRF(prf_model, subsampling=subsampling)
def subtract_psf(data, psf, positions, fluxes, mask=None):
"""
Removes PSF/PRF at the given positions.
To calculate residual images the PSF/PRF model is subtracted from the data
at the given positions.
Parameters
----------
data : ndarray
Image data.
psf : `photutils.psf.DiscretePRF` or `photutils.psf.GaussianPSF`
PSF/PRF model to be substracted from the data.
positions : ndarray
List of center positions where PSF/PRF is removed.
fluxes : ndarray
List of fluxes of the sources, for correct
normalization.
"""
# Set up indices
indices = np.indices(data.shape)
data_ = data.copy()
# Loop over position
for i, position in enumerate(positions):
x_0, y_0 = position
y = extract_array(indices[0], psf.shape, (y_0, x_0))
x = extract_array(indices[1], psf.shape, (y_0, x_0))
psf.amplitude.value = fluxes[i]
psf.x_0.value, psf.y_0.value = x_0, y_0
psf_image = psf(x, y)
data_ = add_array(data_, -psf_image, (y_0, x_0))
return data_
|