/usr/lib/python3/dist-packages/photutils/segmentation.py is in python3-photutils 0.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from distutils.version import LooseVersion
import numpy as np
from astropy.table import Table
from astropy.utils import lazyproperty
import astropy.units as u
from astropy.wcs.utils import pixel_to_skycoord
from .utils.convolution import _convolve_data
from .utils.prepare_data import _prepare_data
__all__ = ['SegmentationImage', 'SourceProperties', 'source_properties',
'properties_table']
# outline_segments requires scikit-image >= 0.11
__doctest_skip__ = {'SegmentationImage.outline_segments'}
__doctest_requires__ = {('SegmentationImage', 'SegmentationImage.*',
'SourceProperties', 'SourceProperties.*',
'source_properties', 'properties_table'): ['scipy'],
('SegmentationImage', 'SegmentationImage.*',
'SourceProperties', 'SourceProperties.*',
'source_properties', 'properties_table'):
['skimage']}
class SegmentationImage(object):
"""
Class for a segmentation image.
Parameters
----------
data : array_like (int)
A 2D segmentation image where sources are labeled by different
positive integer values. A value of zero is reserved for the
background.
"""
def __init__(self, data):
if np.min(data) < 0:
raise ValueError('The segmentation image cannot contain '
'negative integers.')
self._data = np.asanyarray(data, dtype=np.int)
self._update_slices()
def _update_slices(self):
"""
Update the segmentation slices after changes to self._data made
by the class methods.
"""
from scipy.ndimage import find_objects
self.slices = find_objects(self._data)
@property
def data(self):
"""
The 2D segmentation image.
"""
return self._data
@property
def array(self):
"""
The 2D segmentation image.
"""
return self._data
def __array__(self):
"""
Array representation of the segmentation image (e.g., for
matplotlib).
"""
return self._data
@property
def data_masked(self):
"""
A `~numpy.ma.MaskedArray` version of the segmentation image
where the background (label = 0) has been masked.
"""
return np.ma.masked_where(self.data == 0, self.data)
@staticmethod
def _labels(data):
"""
Return a sorted array of the non-zero labels in the segmentation
image.
Parameters
----------
data : array_like (int)
A 2D segmentation image where sources are labeled by
different positive integer values. A value of zero is
reserved for the background.
Returns
-------
result : `~numpy.ndarray`
An array of non-zero label numbers.
Notes
-----
This is a separate static method so it can be used on masked
versions of the segmentation image (cf.
``~photutils.SegmentationImage.remove_masked_labels``.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm._labels(segm.data)
array([1, 3, 4, 5, 7])
"""
return np.unique(data[data != 0])
@property
def shape(self):
"""
The shape of the 2D segmentation image.
"""
return self._data.shape
@property
def labels(self):
"""The sorted non-zero labels in the segmentation image."""
return self._labels(self.data)
@property
def nlabels(self):
"""The number of non-zero labels in the segmentation image."""
return len(self.labels)
@property
def max(self):
"""The maximum non-zero label in the segmentation image."""
return np.max(self.data)
@property
def is_sequential(self):
"""
Determine whether or not the non-zero labels in the segmenation
image are sequential (with no missing values).
"""
if (self.labels[-1] - self.labels[0] + 1) == self.nlabels:
return True
else:
return False
def check_label(self, label):
"""
Check for a valid label label number within the segmentation
image.
Parameters
----------
label : int
The label number to check.
Raises
------
ValueError
If the input ``label`` is invalid.
"""
if label == 0:
raise ValueError('label "0" is reserved for the background')
if label < 0:
raise ValueError('label must be a positive integer, got '
'"{0}"'.format(label))
if label not in self.data:
raise ValueError('label "{0}" is not in the segmentation '
'image'.format(label))
def outline_segments(self, mask_background=False):
"""
Outline the labeled segments.
The "outlines" represent the pixels *just inside* the segments,
leaving the background pixels unmodified. This corresponds to
the ``mode='inner'`` in `skimage.segmentation.find_boundaries`.
Parameters
----------
mask_background : bool, optional
Set to `True` to mask the background pixels (labels = 0) in
the returned image. This is useful for overplotting the
segment outlines on an image. The default is `False`.
Returns
-------
boundaries : 2D `~numpy.ndarray` or `~numpy.ma.MaskedArray`
An image with the same shape of the segmenation image
containing only the outlines of the labeled segments. The
pixel values in the outlines correspond to the labels in the
segmentation image. If ``mask_background`` is `True`, then
a `~numpy.ma.MaskedArray` is returned.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[0, 0, 0, 0, 0, 0],
... [0, 2, 2, 2, 2, 0],
... [0, 2, 2, 2, 2, 0],
... [0, 2, 2, 2, 2, 0],
... [0, 2, 2, 2, 2, 0],
... [0, 0, 0, 0, 0, 0]])
>>> segm.outline_segments()
array([[0, 0, 0, 0, 0, 0],
[0, 2, 2, 2, 2, 0],
[0, 2, 0, 0, 2, 0],
[0, 2, 0, 0, 2, 0],
[0, 2, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0]])
"""
import skimage
if LooseVersion(skimage.__version__) < LooseVersion('0.11'):
raise ImportError('The outline_segments() function requires '
'scikit-image >= 0.11')
from skimage.segmentation import find_boundaries
outlines = self.data * find_boundaries(self.data, mode='inner')
if mask_background:
outlines = np.ma.masked_where(outlines == 0, outlines)
return outlines
def relabel(self, labels, new_label):
"""
Relabel one or more label numbers.
The input ``labels`` will all be relabeled to ``new_label``.
Parameters
----------
labels : int, array-like (1D, int)
The label numbers(s) to relabel.
new_label : int
The relabeled label number.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.relabel(labels=[1, 7], new_label=2)
>>> segm.data
array([[2, 2, 0, 0, 4, 4],
[0, 0, 0, 0, 0, 4],
[0, 0, 3, 3, 0, 0],
[2, 0, 0, 0, 0, 5],
[2, 2, 0, 5, 5, 5],
[2, 2, 0, 0, 5, 5]])
"""
labels = np.atleast_1d(labels)
for label in labels:
self._data[np.where(self.data == label)] = new_label
self._update_slices()
def relabel_sequential(self, start_label=1):
"""
Relabel the label numbers sequentially, such that there are no
missing label numbers (up to the maximum label number).
Parameters
----------
start_label : int, optional
The starting label number, which should be a positive
integer. The default is 1.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.relabel_sequential()
>>> segm.data
array([[1, 1, 0, 0, 3, 3],
[0, 0, 0, 0, 0, 3],
[0, 0, 2, 2, 0, 0],
[5, 0, 0, 0, 0, 4],
[5, 5, 0, 4, 4, 4],
[5, 5, 0, 0, 4, 4]])
"""
if start_label <= 0:
raise ValueError('start_label must be > 0.')
if self.is_sequential and (self.labels[0] == start_label):
return
forward_map = np.zeros(self.max + 1, dtype=np.int)
forward_map[self.labels] = np.arange(self.nlabels) + start_label
self._data = forward_map[self.data]
self._update_slices()
def keep_labels(self, labels, relabel=False):
"""
Keep only the specified label numbers.
Parameters
----------
labels : int, array-like (1D, int)
The label number(s) to keep. Labels of zero and those not
in the segmentation image will be ignored.
relabel : bool, optional
If `True`, then the segmentation image will be relabeled
such that the labels are in sequential order starting from
1.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.keep_labels(labels=3)
>>> segm.data
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 3, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.keep_labels(labels=[5, 3])
>>> segm.data
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 3, 0, 0],
[0, 0, 0, 0, 0, 5],
[0, 0, 0, 5, 5, 5],
[0, 0, 0, 0, 5, 5]])
"""
labels = np.atleast_1d(labels)
labels_tmp = list(set(self.labels) - set(labels))
self.remove_labels(labels_tmp, relabel=relabel)
def remove_labels(self, labels, relabel=False):
"""
Remove one or more label numbers.
Parameters
----------
labels : int, array-like (1D, int)
The label number(s) to remove. Labels of zero and those not
in the segmentation image will be ignored.
relabel : bool, optional
If `True`, then the segmentation image will be relabeled
such that the labels are in sequential order starting from
1.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.remove_labels(labels=5)
>>> segm.data
array([[1, 1, 0, 0, 4, 4],
[0, 0, 0, 0, 0, 4],
[0, 0, 3, 3, 0, 0],
[7, 0, 0, 0, 0, 0],
[7, 7, 0, 0, 0, 0],
[7, 7, 0, 0, 0, 0]])
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.remove_labels(labels=[5, 3])
>>> segm.data
array([[1, 1, 0, 0, 4, 4],
[0, 0, 0, 0, 0, 4],
[0, 0, 0, 0, 0, 0],
[7, 0, 0, 0, 0, 0],
[7, 7, 0, 0, 0, 0],
[7, 7, 0, 0, 0, 0]])
"""
self.relabel(labels, new_label=0)
if relabel:
self.relabel_sequential()
def remove_border_labels(self, border_width, partial_overlap=True,
relabel=False):
"""
Remove labeled segments near the image border.
Labels within the defined border region will be removed.
Parameters
----------
border_width : int
The width of the border region in pixels.
partial_overlap : bool, optional
If this is set to `True` (the default), a segment that
partially extends into the border region will be removed.
Segments that are completely within the border region are
always removed.
relabel : bool, optional
If `True`, then the segmentation image will be relabeled
such that the labels are in sequential order starting from
1.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.remove_border_labels(border_width=1)
>>> segm.data
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 3, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.remove_border_labels(border_width=1,
... partial_overlap=False)
>>> segm.data
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 3, 0, 0],
[7, 0, 0, 0, 0, 5],
[7, 7, 0, 5, 5, 5],
[7, 7, 0, 0, 5, 5]])
"""
if border_width >= min(self.shape) / 2:
raise ValueError('border_width must be smaller than half the '
'image size in either dimension')
border = np.zeros(self.shape, dtype=np.bool)
border[:border_width, :] = True
border[-border_width:, :] = True
border[:, :border_width] = True
border[:, -border_width:] = True
self.remove_masked_labels(border, partial_overlap=partial_overlap,
relabel=relabel)
def remove_masked_labels(self, mask, partial_overlap=True,
relabel=False):
"""
Remove labeled segments located within a masked region.
Parameters
----------
mask : array_like (bool)
A boolean mask, with the same shape as the segmentation
image (``.data``), where `True` values indicate masked
pixels.
partial_overlap : bool, optional
If this is set to `True` (the default), a segment that
partially extends into a masked region will also be removed.
Segments that are completely within a masked region are
always removed.
relabel : bool, optional
If `True`, then the segmentation image will be relabeled
such that the labels are in sequential order starting from
1.
Examples
--------
>>> from photutils import SegmentationImage
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> mask = np.zeros_like(segm.data, dtype=np.bool)
>>> mask[0, :] = True # mask the first row
>>> segm.remove_masked_labels(mask)
>>> segm.data
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 3, 0, 0],
[7, 0, 0, 0, 0, 5],
[7, 7, 0, 5, 5, 5],
[7, 7, 0, 0, 5, 5]])
>>> segm = SegmentationImage([[1, 1, 0, 0, 4, 4],
... [0, 0, 0, 0, 0, 4],
... [0, 0, 3, 3, 0, 0],
... [7, 0, 0, 0, 0, 5],
... [7, 7, 0, 5, 5, 5],
... [7, 7, 0, 0, 5, 5]])
>>> segm.remove_masked_labels(mask, partial_overlap=False)
>>> segm.data
array([[0, 0, 0, 0, 4, 4],
[0, 0, 0, 0, 0, 4],
[0, 0, 3, 3, 0, 0],
[7, 0, 0, 0, 0, 5],
[7, 7, 0, 5, 5, 5],
[7, 7, 0, 0, 5, 5]])
"""
if mask.shape != self.shape:
raise ValueError('mask must have the same shape as the '
'segmentation image')
remove_labels = self._labels(self.data[mask])
if not partial_overlap:
interior_labels = self._labels(self.data[~mask])
remove_labels = list(set(remove_labels) - set(interior_labels))
self.remove_labels(remove_labels, relabel=relabel)
class SourceProperties(object):
"""
Class to calculate photometry and morphological properties of a
single labeled source.
Parameters
----------
data : array_like or `~astropy.units.Quantity`
The 2D array from which to calculate the source photometry and
properties. If ``filtered_data`` is input, then it will be used
instead of ``data`` to calculate the source centroid and
morphological properties. Source photometry is always measured
from ``data``. ``data`` should be background-subtracted.
segment_img : `SegmentationImage` or array_like (int)
A 2D segmentation image, either as a `SegmentationImage` object
or an `~numpy.ndarray`, with the same shape as ``data`` where
sources are labeled by different positive integer values. A
value of zero is reserved for the background.
label : int
The label number of the source whose properties to calculate.
filtered_data : array-like or `~astropy.units.Quantity`, optional
The filtered version of the background-subtracted ``data`` from
which to calculate the source centroid and morphological
properties. The kernel used to perform the filtering should be
the same one used in defining the source segments (e.g., see
:func:`~photutils.detect_sources`). If `None`, then the
unfiltered ``data`` will be used instead. Note that
`SExtractor`_'s centroid and morphological parameters are
calculated from the filtered "detection" image.
error : array_like or `~astropy.units.Quantity`, optional
The pixel-wise Gaussian 1-sigma errors of the input ``data``.
If ``effective_gain`` is input, then ``error`` should include
all sources of "background" error but *exclude* the Poisson
error of the sources. If ``effective_gain`` is `None`, then
``error`` is assumed to include *all* sources of error,
including the Poisson error of the sources. ``error`` must have
the same shape as ``data``. See the Notes section below for
details on the error propagation.
effective_gain : float, array-like, or `~astropy.units.Quantity`, optional
Ratio of counts (e.g., electrons or photons) to the units of
``data``. This ratio is used to calculate the Poisson error of
the sources when it is not included in ``error``. If
``effective_gain`` is `None`, then ``error`` is assumed to
include *all* sources of error. See the Notes section below for
details on the error propagation.
If you are calculating the properties of many sources from the
same data, it is highly recommended that you input a *total*
error array instead of using ``effective_gain``. Otherwise a
total error array will need to be repeatedly recalculated.
mask : array_like (bool), optional
A boolean mask with the same shape as ``data`` where a `True`
value indicates the corresponding element of ``data`` is masked.
Masked data are excluded from all calculations.
background : float, array_like, or `~astropy.units.Quantity`, optional
The background level that was *previously* present in the input
``data``. ``background`` may either be a scalar value or a 2D
image with the same shape as the input ``data``. Inputting the
``background`` merely allows for its properties to be measured
within each source segment. The input ``background`` does *not*
get subtracted from the input ``data``, which should already be
background-subtracted.
wcs : `~astropy.wcs.WCS`
The WCS transformation to use. If `None`, then
`~photutils.SourceProperties.icrs_centroid`,
`~photutils.SourceProperties.ra_icrs_centroid`, and
`~photutils.SourceProperties.dec_icrs_centroid` will be `None`.
Notes
-----
`SExtractor`_'s centroid and morphological parameters are always
calculated from the filtered "detection" image. The usual downside
of the filtering is the sources will be made more circular than they
actually are. If you wish to reproduce `SExtractor`_ results, then
use the ``filtered_data`` input. If ``filtered_data`` is `None`,
then the unfiltered ``data`` will be used for the source centroid
and morphological parameters.
Negative (background-subtracted) data values within the source
segment are set to zero when measuring morphological properties
based on image moments. This could occur, for example, if the
segmentation image was defined from a different image (e.g.,
different bandpass) or if the background was oversubtracted. Note
that `~photutils.SourceProperties.source_sum` includes the
contribution of negative (background-subtracted) data values.
`~photutils.SourceProperties.source_sum_err` will ignore such pixels
when calculating the source Poission error (i.e. when if
``effective_gain`` is input; see below).
If ``effective_gain`` is input, then ``error`` should include all
sources of "background" error but *exclude* the Poisson error of the
sources. The total error image, :math:`\sigma_{\mathrm{tot}}` is
then:
.. math:: \\sigma_{\\mathrm{tot}} = \\sqrt{\\sigma_{\\mathrm{b}}^2 +
\\frac{(I - B)}{g}}
where :math:`\sigma_b`, :math:`(I - B)`, and :math:`g` are the
background ``error`` image, the background-subtracted ``data``
image, and ``effective_gain``, respectively.
Pixels where :math:`(I_i - B_i)` is negative do not contribute
additional Poisson noise to the total error, i.e.
:math:`\sigma_{\mathrm{tot}, i} = \sigma_{\mathrm{b}, i}`. Note
that this is different from `SExtractor`_, which sums the total
variance in the segment, including pixels where :math:`(I_i - B_i)`
is negative. In such cases, `SExtractor`_ underestimates the total
errors.
If ``effective_gain`` is `None`, then ``error`` is assumed to
include *all* sources of error, including the Poisson error of the
sources, i.e. :math:`\sigma_{\mathrm{tot}} = \sigma_{\mathrm{b}} =
\mathrm{error}`.
For example, if your input ``data`` are in units of ADU, then
``effective_gain`` should represent electrons/ADU. If your input
``data`` are in units of electrons/s then ``effective_gain`` should
be the exposure time or an exposure time map (e.g., for mosaics with
non-uniform exposure times).
``effective_gain`` can be a 2D gain image with the same shape as the
``data``. This is useful with mosaic images that have variable
depths (i.e., exposure times) across the field. For example, one
should use an exposure-time map as the ``effective_gain`` for a
variable depth mosaic image in count-rate units.
`~photutils.SourceProperties.source_sum_err` is simply the
quadrature sum of the pixel-wise total errors over the non-masked
pixels within the source segment:
.. math:: \\Delta F = \\sqrt{\\sum_{i \\in S}
\\sigma_{\\mathrm{tot}, i}^2}
where :math:`\Delta F` is
`~photutils.SourceProperties.source_sum_err` and :math:`S` are the
non-masked pixels in the source segment.
Custom errors for source segments can be calculated using the
`~photutils.SourceProperties.error_cutout_ma` and
`~photutils.SourceProperties.background_cutout_ma` properties, which
are 2D `~numpy.ma.MaskedArray` cutout versions of the input
``error`` and ``background``. The mask is `True` for both pixels
outside of the source segment and masked pixels.
.. _SExtractor: http://www.astromatic.net/software/sextractor
"""
def __init__(self, data, segment_img, label, filtered_data=None,
error=None, effective_gain=None, mask=None, background=None,
wcs=None):
if not isinstance(segment_img, SegmentationImage):
segment_img = SegmentationImage(segment_img)
if segment_img.shape != data.shape:
raise ValueError('The data and segmentation image must have '
'the same shape')
if mask is not None:
if mask.shape != data.shape:
raise ValueError('The data and mask must have the same shape')
segment_img.check_label(label)
self.label = label
self._slice = segment_img.slices[label - 1]
self._segment_img = segment_img
self._mask = mask
self._wcs = wcs
data, error, background = _prepare_data(
data, error=error, effective_gain=effective_gain,
background=background)
# data and filtered_data should be background-subtracted
self._data = data
if filtered_data is None:
self._filtered_data = data
else:
self._filtered_data = filtered_data
self._error = error # *total* error
self._background = background # 2D array
def __getitem__(self, key):
return getattr(self, key, None)
def make_cutout(self, data, masked_array=False):
"""
Create a (masked) cutout array from the input ``data`` using the
minimal bounding box of the source segment.
Parameters
----------
data : array-like (2D)
The data array from which to create the masked cutout array.
``data`` must have the same shape as the segmentation image
input into `SourceProperties`.
masked_array : bool, optional
If `True` then a `~numpy.ma.MaskedArray` will be created
where the mask is `True` for both pixels outside of the
source segment and any masked pixels. If `False`, then a
`~numpy.ndarray` will be generated.
Returns
-------
result : `~numpy.ndarray` or `~numpy.ma.MaskedArray` (2D)
The 2D cutout array or masked array.
"""
if data is None:
return None
data = np.asarray(data)
if data.shape != self._data.shape:
raise ValueError('data must have the same shape as the '
'segmentation image input to SourceProperties')
if masked_array:
return np.ma.masked_array(data[self._slice],
mask=self._cutout_total_mask)
else:
return data[self._slice]
def to_table(self, columns=None, exclude_columns=None):
"""
Create a `~astropy.table.Table` of properties.
If ``columns`` or ``exclude_columns`` are not input, then the
`~astropy.table.Table` will include all scalar-valued
properties. Multi-dimensional properties, e.g.
`~photutils.SourceProperties.data_cutout`, can be included in
the ``columns`` input.
Parameters
----------
columns : str or list of str, optional
Names of columns, in order, to include in the output
`~astropy.table.Table`. The allowed column names are any of
the attributes of `SourceProperties`.
exclude_columns : str or list of str, optional
Names of columns to exclude from the default properties list
in the output `~astropy.table.Table`. The default
properties are those with scalar values.
Returns
-------
table : `~astropy.table.Table`
A single-row table of properties of the source.
"""
return properties_table(self, columns=columns,
exclude_columns=exclude_columns)
@lazyproperty
def _cutout_segment_bool(self):
"""
_cutout_segment_bool is `True` only for pixels in the source
segment of interest. Pixels from other sources within the
rectangular cutout are not included.
"""
return self._segment_img.data[self._slice] == self.label
@lazyproperty
def _cutout_total_mask(self):
"""
_cutout_total_mask is `True` for regions outside of the source
segment or where the input mask is `True`.
"""
mask = ~self._cutout_segment_bool
if self._mask is not None:
mask |= self._mask[self._slice]
return mask
@lazyproperty
def data_cutout(self):
"""
A 2D cutout from the (background-subtracted) data of the source
segment.
"""
return self.make_cutout(self._data, masked_array=False)
@lazyproperty
def data_cutout_ma(self):
"""
A 2D `~numpy.ma.MaskedArray` cutout from the
(background-subtracted) data, where the mask is `True` for both
pixels outside of the source segment and masked pixels.
"""
return self.make_cutout(self._data, masked_array=True)
@lazyproperty
def _data_cutout_maskzeroed_double(self):
"""
A 2D cutout from the (background-subtracted) (filtered) data,
where pixels outside of the source segment and masked pixels are
set to zero. Negative data values are also set to zero because
negative pixels (especially at large radii) can result in image
moments that result in negative variances. The cutout image is
double precision, which is required for scikit-image's
Cython-based moment functions.
"""
cutout = self.make_cutout(self._filtered_data, masked_array=False)
cutout = np.where(cutout > 0, cutout, 0.) # negative pixels -> 0
return (cutout * ~self._cutout_total_mask).astype(np.float64)
@lazyproperty
def error_cutout_ma(self):
"""
A 2D `~numpy.ma.MaskedArray` cutout from the input ``error``
image, where the mask is `True` for both pixels outside of the
source segment and masked pixels. If ``error`` is `None`, then
``error_cutout_ma`` is also `None`.
"""
return self.make_cutout(self._error, masked_array=True)
@lazyproperty
def background_cutout_ma(self):
"""
A 2D `~numpy.ma.MaskedArray` cutout from the input
``background``, where the mask is `True` for both pixels outside
of the source segment and masked pixels. If ``background`` is
`None`, then ``background_cutout_ma`` is also `None`.
"""
return self.make_cutout(self._background, masked_array=True)
@lazyproperty
def coords(self):
"""
A tuple of `~numpy.ndarray`\s containing the ``y`` and ``x``
pixel coordinates of the source segment. Masked pixels are not
included.
"""
yy, xx = np.nonzero(self.data_cutout_ma)
coords = (yy + self._slice[0].start, xx + self._slice[1].start)
return coords
@lazyproperty
def values(self):
"""
A `~numpy.ndarray` of the (background-subtracted) pixel values
within the source segment. Masked pixels are not included.
"""
return self.data_cutout[~self._cutout_total_mask]
@lazyproperty
def moments(self):
"""Spatial moments up to 3rd order of the source."""
from skimage.measure import moments
return moments(self._data_cutout_maskzeroed_double, 3)
@lazyproperty
def moments_central(self):
"""
Central moments (translation invariant) of the source up to 3rd
order.
"""
from skimage.measure import moments_central
ycentroid, xcentroid = self.cutout_centroid.value
return moments_central(self._data_cutout_maskzeroed_double,
ycentroid, xcentroid, 3)
@lazyproperty
def id(self):
"""
The source identification number corresponding to the object
label in the segmentation image.
"""
return self.label
@lazyproperty
def cutout_centroid(self):
"""
The ``(y, x)`` coordinate, relative to the `data_cutout`, of
the centroid within the source segment.
"""
m = self.moments
if m[0, 0] != 0:
ycentroid = m[0, 1] / m[0, 0]
xcentroid = m[1, 0] / m[0, 0]
return (ycentroid, xcentroid) * u.pix
else:
return (np.nan, np.nan) * u.pix
@lazyproperty
def centroid(self):
"""
The ``(y, x)`` coordinate of the centroid within the source
segment.
"""
ycen, xcen = self.cutout_centroid.value
return (ycen + self._slice[0].start,
xcen + self._slice[1].start) * u.pix
@lazyproperty
def xcentroid(self):
"""
The ``x`` coordinate of the centroid within the source segment.
"""
return self.centroid[1]
@lazyproperty
def ycentroid(self):
"""
The ``y`` coordinate of the centroid within the source segment.
"""
return self.centroid[0]
@lazyproperty
def icrs_centroid(self):
"""
The International Celestial Reference System (ICRS) coordinates
of the centroid within the source segment, returned as a
`~astropy.coordinates.SkyCoord` object.
"""
if self._wcs is not None:
return pixel_to_skycoord(self.xcentroid.value,
self.ycentroid.value,
self._wcs, origin=1).icrs
else:
return None
@lazyproperty
def ra_icrs_centroid(self):
"""
The ICRS Right Ascension coordinate (in degrees) of the centroid
within the source segment.
"""
if self._wcs is not None:
return self.icrs_centroid.ra.degree * u.deg
else:
return None
@lazyproperty
def dec_icrs_centroid(self):
"""
The ICRS Declination coordinate (in degrees) of the centroid
within the source segment.
"""
if self._wcs is not None:
return self.icrs_centroid.dec.degree * u.deg
else:
return None
@lazyproperty
def bbox(self):
"""
The bounding box ``(ymin, xmin, ymax, xmax)`` of the minimal
rectangular region containing the source segment.
"""
# (stop - 1) to return the max pixel location, not the slice index
return (self._slice[0].start, self._slice[1].start,
self._slice[0].stop - 1, self._slice[1].stop - 1) * u.pix
@lazyproperty
def xmin(self):
"""
The minimum ``x`` pixel location of the minimal bounding box
(`~photutils.SourceProperties.bbox`) of the source segment.
"""
return self.bbox[1]
@lazyproperty
def xmax(self):
"""
The maximum ``x`` pixel location of the minimal bounding box
(`~photutils.SourceProperties.bbox`) of the source segment.
"""
return self.bbox[3]
@lazyproperty
def ymin(self):
"""
The minimum ``y`` pixel location of the minimal bounding box
(`~photutils.SourceProperties.bbox`) of the source segment.
"""
return self.bbox[0]
@lazyproperty
def ymax(self):
"""
The maximum ``y`` pixel location of the minimal bounding box
(`~photutils.SourceProperties.bbox`) of the source segment.
"""
return self.bbox[2]
@lazyproperty
def min_value(self):
"""
The minimum pixel value of the (background-subtracted) data
within the source segment.
"""
return np.min(self.values)
@lazyproperty
def max_value(self):
"""
The maximum pixel value of the (background-subtracted) data
within the source segment.
"""
return np.max(self.values)
@lazyproperty
def minval_cutout_pos(self):
"""
The ``(y, x)`` coordinate, relative to the `data_cutout`, of the
minimum pixel value of the (background-subtracted) data.
"""
return np.argwhere(self.data_cutout_ma == self.min_value)[0] * u.pix
@lazyproperty
def maxval_cutout_pos(self):
"""
The ``(y, x)`` coordinate, relative to the `data_cutout`, of the
maximum pixel value of the (background-subtracted) data.
"""
return np.argwhere(self.data_cutout_ma == self.max_value)[0] * u.pix
@lazyproperty
def minval_pos(self):
"""
The ``(y, x)`` coordinate of the minimum pixel value of the
(background-subtracted) data.
"""
yp, xp = np.array(self.minval_cutout_pos)
return (yp + self._slice[0].start, xp + self._slice[1].start) * u.pix
@lazyproperty
def maxval_pos(self):
"""
The ``(y, x)`` coordinate of the maximum pixel value of the
(background-subtracted) data.
"""
yp, xp = np.array(self.maxval_cutout_pos)
return (yp + self._slice[0].start, xp + self._slice[1].start) * u.pix
@lazyproperty
def minval_xpos(self):
"""
The ``x`` coordinate of the minimum pixel value of the
(background-subtracted) data.
"""
return self.minval_pos[1]
@lazyproperty
def minval_ypos(self):
"""
The ``y`` coordinate of the minimum pixel value of the
(background-subtracted) data.
"""
return self.minval_pos[0]
@lazyproperty
def maxval_xpos(self):
"""
The ``x`` coordinate of the maximum pixel value of the
(background-subtracted) data.
"""
return self.maxval_pos[1]
@lazyproperty
def maxval_ypos(self):
"""
The ``y`` coordinate of the maximum pixel value of the
(background-subtracted) data.
"""
return self.maxval_pos[0]
@lazyproperty
def area(self):
"""The area of the source segment in units of pixels**2."""
return len(self.values) * u.pix**2
@lazyproperty
def equivalent_radius(self):
"""
The radius of a circle with the same `area` as the source
segment.
"""
return np.sqrt(self.area / np.pi)
@lazyproperty
def perimeter(self):
"""
The perimeter of the source segment, approximated lines through
the centers of the border pixels using a 4-connectivity.
"""
from skimage.measure import perimeter
return perimeter(self._cutout_segment_bool, 4) * u.pix
@lazyproperty
def inertia_tensor(self):
"""
The inertia tensor of the source for the rotation around its
center of mass.
"""
mu = self.moments_central
a = mu[2, 0]
b = -mu[1, 1]
c = mu[0, 2]
return np.array([[a, b], [b, c]]) * u.pix**2
@lazyproperty
def covariance(self):
"""
The covariance matrix of the 2D Gaussian function that has the
same second-order moments as the source.
"""
mu = self.moments_central
if mu[0, 0] != 0:
m = mu / mu[0, 0]
covariance = self._check_covariance(
np.array([[m[2, 0], m[1, 1]], [m[1, 1], m[0, 2]]]))
return covariance * u.pix**2
else:
return np.empty((2, 2)) * np.nan * u.pix**2
@staticmethod
def _check_covariance(covariance):
"""
Check and modify the covariance matrix in the case of
"infinitely" thin detections. This follows SExtractor's
prescription of incrementally increasing the diagonal elements
by 1/12.
"""
p = 1. / 12 # arbitrary SExtractor value
val = (covariance[0, 0] * covariance[1, 1]) - covariance[0, 1]**2
if val >= p**2:
return covariance
else:
covar = np.copy(covariance)
while val < p**2:
covar[0, 0] += p
covar[1, 1] += p
val = (covar[0, 0] * covar[1, 1]) - covar[0, 1]**2
return covar
@lazyproperty
def covariance_eigvals(self):
"""
The two eigenvalues of the `covariance` matrix in decreasing
order.
"""
if not np.isnan(np.sum(self.covariance)):
eigvals = np.linalg.eigvals(self.covariance)
if np.any(eigvals < 0): # negative variance
return (np.nan, np.nan) * u.pix**2
return (np.max(eigvals), np.min(eigvals)) * u.pix**2
else:
return (np.nan, np.nan) * u.pix**2
@lazyproperty
def semimajor_axis_sigma(self):
"""
The 1-sigma standard deviation along the semimajor axis of the
2D Gaussian function that has the same second-order central
moments as the source.
"""
# this matches SExtractor's A parameter
return np.sqrt(self.covariance_eigvals[0])
@lazyproperty
def semiminor_axis_sigma(self):
"""
The 1-sigma standard deviation along the semiminor axis of the
2D Gaussian function that has the same second-order central
moments as the source.
"""
# this matches SExtractor's B parameter
return np.sqrt(self.covariance_eigvals[1])
@lazyproperty
def eccentricity(self):
"""
The eccentricity of the 2D Gaussian function that has the same
second-order moments as the source.
The eccentricity is the fraction of the distance along the
semimajor axis at which the focus lies.
.. math:: e = \\sqrt{1 - \\frac{b^2}{a^2}}
where :math:`a` and :math:`b` are the lengths of the semimajor
and semiminor axes, respectively.
"""
l1, l2 = self.covariance_eigvals
if l1 == 0:
return 0.
return np.sqrt(1. - (l2 / l1))
@lazyproperty
def orientation(self):
"""
The angle in radians between the ``x`` axis and the major axis
of the 2D Gaussian function that has the same second-order
moments as the source. The angle increases in the
counter-clockwise direction.
"""
a, b, b, c = self.covariance.flat
if a < 0 or c < 0: # negative variance
return np.nan * u.rad
return 0.5 * np.arctan2(2. * b, (a - c))
@lazyproperty
def elongation(self):
"""
The ratio of the lengths of the semimajor and semiminor axes:
.. math:: \mathrm{elongation} = \\frac{a}{b}
where :math:`a` and :math:`b` are the lengths of the semimajor
and semiminor axes, respectively.
Note that this is the same as `SExtractor`_'s elongation
parameter.
"""
return self.semimajor_axis_sigma / self.semiminor_axis_sigma
@lazyproperty
def ellipticity(self):
"""
``1`` minus the ratio of the lengths of the semimajor and
semiminor axes (or ``1`` minus the `elongation`):
.. math:: \mathrm{ellipticity} = 1 - \\frac{b}{a}
where :math:`a` and :math:`b` are the lengths of the semimajor
and semiminor axes, respectively.
Note that this is the same as `SExtractor`_'s ellipticity
parameter.
"""
return 1.0 - (self.semiminor_axis_sigma / self.semimajor_axis_sigma)
@lazyproperty
def covar_sigx2(self):
"""
The ``(0, 0)`` element of the `covariance` matrix, representing
:math:`\sigma_x^2`, in units of pixel**2.
Note that this is the same as `SExtractor`_'s X2 parameter.
"""
return self.covariance[0, 0]
@lazyproperty
def covar_sigy2(self):
"""
The ``(1, 1)`` element of the `covariance` matrix, representing
:math:`\sigma_y^2`, in units of pixel**2.
Note that this is the same as `SExtractor`_'s Y2 parameter.
"""
return self.covariance[1, 1]
@lazyproperty
def covar_sigxy(self):
"""
The ``(0, 1)`` and ``(1, 0)`` elements of the `covariance`
matrix, representing :math:`\sigma_x \sigma_y`, in units of
pixel**2.
Note that this is the same as `SExtractor`_'s XY parameter.
"""
return self.covariance[0, 1]
@lazyproperty
def cxx(self):
"""
`SExtractor`_'s CXX ellipse parameter in units of pixel**(-2).
The ellipse is defined as
.. math::
cxx (x - \\bar{x})^2 + cxy (x - \\bar{x}) (y - \\bar{y}) +
cyy (y - \\bar{y})^2 = R^2
where :math:`R` is a parameter which scales the ellipse (in
units of the axes lengths). `SExtractor`_ reports that the
isophotal limit of a source is well represented by :math:`R
\\approx 3`.
"""
return ((np.cos(self.orientation) / self.semimajor_axis_sigma)**2 +
(np.sin(self.orientation) / self.semiminor_axis_sigma)**2)
@lazyproperty
def cyy(self):
"""
`SExtractor`_'s CYY ellipse parameter in units of pixel**(-2).
The ellipse is defined as
.. math::
cxx (x - \\bar{x})^2 + cxy (x - \\bar{x}) (y - \\bar{y}) +
cyy (y - \\bar{y})^2 = R^2
where :math:`R` is a parameter which scales the ellipse (in
units of the axes lengths). `SExtractor`_ reports that the
isophotal limit of a source is well represented by :math:`R
\\approx 3`.
"""
return ((np.sin(self.orientation) / self.semimajor_axis_sigma)**2 +
(np.cos(self.orientation) / self.semiminor_axis_sigma)**2)
@lazyproperty
def cxy(self):
"""
`SExtractor`_'s CXY ellipse parameter in units of pixel**(-2).
The ellipse is defined as
.. math::
cxx (x - \\bar{x})^2 + cxy (x - \\bar{x}) (y - \\bar{y}) +
cyy (y - \\bar{y})^2 = R^2
where :math:`R` is a parameter which scales the ellipse (in
units of the axes lengths). `SExtractor`_ reports that the
isophotal limit of a source is well represented by :math:`R
\\approx 3`.
"""
return (2. * np.cos(self.orientation) * np.sin(self.orientation) *
((1. / self.semimajor_axis_sigma**2) -
(1. / self.semiminor_axis_sigma**2)))
@lazyproperty
def source_sum(self):
"""
The sum of the non-masked (background-subtracted) data values
within the source segment.
.. math:: F = \\sum_{i \\in S} (I_i - B_i)
where :math:`F` is ``source_sum``, :math:`(I_i - B_i)` is the
background-subtracted input ``data``, and :math:`S` are the
non-masked pixels in the source segment.
"""
return np.sum(np.ma.masked_array(self._data[self._slice],
mask=self._cutout_total_mask))
@lazyproperty
def source_sum_err(self):
"""
The uncertainty of `~photutils.SourceProperties.source_sum`,
propagated from the input ``error`` array.
``source_sum_err`` is the quadrature sum of the total errors
over the non-masked pixels within the source segment:
.. math:: \\Delta F = \\sqrt{\\sum_{i \\in S}
\\sigma_{\\mathrm{tot}, i}^2}
where :math:`\Delta F` is ``source_sum_err``,
:math:`\sigma_{\mathrm{tot, i}}` are the pixel-wise total
errors, and :math:`S` are the non-masked pixels in the source
segment.
"""
if self._error is not None:
# power doesn't work here, see astropy #2968
# return np.sqrt(np.sum(self.error_cutout_ma**2))
return np.sqrt(np.sum(
np.ma.masked_array(self.error_cutout_ma.data**2,
mask=self.error_cutout_ma.mask)))
else:
return None
@lazyproperty
def background_sum(self):
"""The sum of ``background`` values within the source segment."""
if self._background is not None:
return np.sum(self.background_cutout_ma)
else:
return None
@lazyproperty
def background_mean(self):
"""The mean of ``background`` values within the source segment."""
if self._background is not None:
return np.mean(self.background_cutout_ma)
else:
return None
@lazyproperty
def background_at_centroid(self):
"""
The value of the ``background`` at the position of the source
centroid. Fractional position values are determined using
bilinear interpolation.
"""
from scipy.ndimage import map_coordinates
if self._background is None:
return None
else:
return map_coordinates(
self._background, [[self.ycentroid.value],
[self.xcentroid.value]])[0]
def source_properties(data, segment_img, error=None, effective_gain=None,
mask=None, background=None, filter_kernel=None,
wcs=None, labels=None):
"""
Calculate photometry and morphological properties of sources defined
by a labeled segmentation image.
Parameters
----------
data : array_like or `~astropy.units.Quantity`
The 2D array from which to calculate the source photometry and
properties. ``data`` should be background-subtracted.
segment_img : `SegmentationImage` or array_like (int)
A 2D segmentation image, either as a `SegmentationImage` object
or an `~numpy.ndarray`, with the same shape as ``data`` where
sources are labeled by different positive integer values. A
value of zero is reserved for the background.
error : array_like or `~astropy.units.Quantity`, optional
The pixel-wise Gaussian 1-sigma errors of the input ``data``.
If ``effective_gain`` is input, then ``error`` should include
all sources of "background" error but *exclude* the Poisson
error of the sources. If ``effective_gain`` is `None`, then
``error`` is assumed to include *all* sources of error,
including the Poisson error of the sources. ``error`` must have
the same shape as ``data``. See the Notes section below for
details on the error propagation.
effective_gain : float, array-like, or `~astropy.units.Quantity`, optional
Ratio of counts (e.g., electrons or photons) to the units of
``data``. This ratio is used to calculate the Poisson error of
the sources when it is not included in ``error``. If
``effective_gain`` is `None`, then ``error`` is assumed to
include *all* sources of error. See the Notes section below for
details on the error propagation.
If you are calculating the properties of many sources from the
same data, it is highly recommended that you input a *total*
error array instead of using ``effective_gain``. Otherwise a
total error array will need to be repeatedly recalculated.
mask : array_like (bool), optional
A boolean mask with the same shape as ``data`` where a `True`
value indicates the corresponding element of ``data`` is masked.
Masked data are excluded from all calculations.
background : float, array_like, or `~astropy.units.Quantity`, optional
The background level that was *previously* present in the input
``data``. ``background`` may either be a scalar value or a 2D
image with the same shape as the input ``data``. Inputting the
``background`` merely allows for its properties to be measured
within each source segment. The input ``background`` does *not*
get subtracted from the input ``data``, which should already be
background-subtracted.
filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional
The 2D array of the kernel used to filter the data prior to
calculating the source centroid and morphological parameters.
The kernel should be the same one used in defining the source
segments (e.g., see :func:`~photutils.detect_sources`). If
`None`, then the unfiltered ``data`` will be used instead. Note
that `SExtractor`_'s centroid and morphological parameters are
calculated from the filtered "detection" image.
wcs : `~astropy.wcs.WCS`
The WCS transformation to use. If `None`, then
`~photutils.SourceProperties.icrs_centroid`,
`~photutils.SourceProperties.ra_icrs_centroid`, and
`~photutils.SourceProperties.dec_icrs_centroid` will be `None`.
labels : int or list of ints
Subset of segmentation labels for which to calculate the
properties. If `None`, then the properties will be calculated
for all labeled sources (the default).
Returns
-------
output : list of `SourceProperties` objects
A list of `SourceProperties` objects, one for each source. The
properties can be accessed as attributes or keys.
Notes
-----
`SExtractor`_'s centroid and morphological parameters are always
calculated from the filtered "detection" image. The usual downside
of the filtering is the sources will be made more circular than they
actually are. If you wish to reproduce `SExtractor`_ results, then
use the ``filtered_data`` input. If ``filtered_data`` is `None`,
then the unfiltered ``data`` will be used for the source centroid
and morphological parameters.
Negative (background-subtracted) data values within the source
segment are set to zero when measuring morphological properties
based on image moments. This could occur, for example, if the
segmentation image was defined from a different image (e.g.,
different bandpass) or if the background was oversubtracted. Note
that `~photutils.SourceProperties.source_sum` includes the
contribution of negative (background-subtracted) data values.
`~photutils.SourceProperties.source_sum_err` will ignore such pixels
when calculating the source Poission error (i.e. when if
``effective_gain`` is input; see below).
If ``effective_gain`` is input, then ``error`` should include all
sources of "background" error but *exclude* the Poisson error of the
sources. The total error image, :math:`\sigma_{\mathrm{tot}}` is
then:
.. math:: \\sigma_{\\mathrm{tot}} = \\sqrt{\\sigma_{\\mathrm{b}}^2 +
\\frac{(I - B)}{g}}
where :math:`\sigma_b`, :math:`(I - B)`, and :math:`g` are the
background ``error`` image, the background-subtracted ``data``
image, and ``effective_gain``, respectively.
Pixels where :math:`(I_i - B_i)` is negative do not contribute
additional Poisson noise to the total error, i.e.
:math:`\sigma_{\mathrm{tot}, i} = \sigma_{\mathrm{b}, i}`. Note
that this is different from `SExtractor`_, which sums the total
variance in the segment, including pixels where :math:`(I_i - B_i)`
is negative. In such cases, `SExtractor`_ underestimates the total
errors.
If ``effective_gain`` is `None`, then ``error`` is assumed to
include *all* sources of error, including the Poisson error of the
sources, i.e. :math:`\sigma_{\mathrm{tot}} = \sigma_{\mathrm{b}} =
\mathrm{error}`.
For example, if your input ``data`` are in units of ADU, then
``effective_gain`` should represent electrons/ADU. If your input
``data`` are in units of electrons/s then ``effective_gain`` should
be the exposure time or an exposure time map (e.g., for mosaics with
non-uniform exposure times).
``effective_gain`` can be a 2D gain image with the same shape as the
``data``. This is useful with mosaic images that have variable
depths (i.e., exposure times) across the field. For example, one
should use an exposure-time map as the ``effective_gain`` for a
variable depth mosaic image in count-rate units.
`~photutils.SourceProperties.source_sum_err` is simply the
quadrature sum of the pixel-wise total errors over the non-masked
pixels within the source segment:
.. math:: \\Delta F = \\sqrt{\\sum_{i \\in S}
\\sigma_{\\mathrm{tot}, i}^2}
where :math:`\Delta F` is
`~photutils.SourceProperties.source_sum_err` and :math:`S` are the
non-masked pixels in the source segment.
.. _SExtractor: http://www.astromatic.net/software/sextractor
See Also
--------
SegmentationImage, SourceProperties, properties_table,
:func:`photutils.detection.detect_sources`
Examples
--------
>>> import numpy as np
>>> from photutils import SegmentationImage, source_properties
>>> image = np.arange(16.).reshape(4, 4)
>>> print(image)
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]
[ 12. 13. 14. 15.]]
>>> segm = SegmentationImage([[1, 1, 0, 0],
... [1, 0, 0, 2],
... [0, 0, 2, 2],
... [0, 2, 2, 0]])
>>> props = source_properties(image, segm)
Print some properties of the first object (labeled with ``1`` in the
segmentation image):
>>> props[0].id # id corresponds to segment label number
1
>>> props[0].centroid # doctest: +FLOAT_CMP
<Quantity [ 0.8, 0.2] pix>
>>> props[0].source_sum # doctest: +FLOAT_CMP
5.0
>>> props[0].area # doctest: +FLOAT_CMP
<Quantity 3.0 pix2>
>>> props[0].max_value # doctest: +FLOAT_CMP
4.0
Print some properties of the second object (labeled with ``2`` in
the segmentation image):
>>> props[1].id # id corresponds to segment label number
2
>>> props[1].centroid # doctest: +FLOAT_CMP
<Quantity [ 2.36363636, 2.09090909] pix>
>>> props[1].perimeter # doctest: +FLOAT_CMP
<Quantity 5.414213562373095 pix>
>>> props[1].orientation # doctest: +FLOAT_CMP
<Quantity -0.7417593069227176 rad>
"""
if not isinstance(segment_img, SegmentationImage):
segment_img = SegmentationImage(segment_img)
if segment_img.shape != data.shape:
raise ValueError('The data and segmentation image must have '
'the same shape')
if labels is None:
labels = segment_img.labels
labels = np.atleast_1d(labels)
# prepare the input data once, instead of repeating for each source
data, error_total, background = _prepare_data(
data, error=error, effective_gain=effective_gain,
background=background)
# filter the data once, instead of repeating for each source
if filter_kernel is not None:
filtered_data = _convolve_data(data, filter_kernel, mode='constant',
fill_value=0.0,
check_normalization=True)
else:
filtered_data = None
sources_props = []
for label in labels:
if label not in segment_img.labels:
continue # skip invalid labels (without warnings)
sources_props.append(SourceProperties(
data, segment_img, label, filtered_data=filtered_data,
error=error_total, effective_gain=None, mask=mask,
background=background, wcs=wcs))
return sources_props
def properties_table(source_props, columns=None, exclude_columns=None):
"""
Construct a `~astropy.table.Table` of properties from a list of
`SourceProperties` objects.
If ``columns`` or ``exclude_columns`` are not input, then the
`~astropy.table.Table` will include all scalar-valued properties.
Multi-dimensional properties, e.g.
`~photutils.SourceProperties.data_cutout`, can be included in the
``columns`` input.
Parameters
----------
source_props : `SourceProperties` or list of `SourceProperties`
A `SourceProperties` object or list of `SourceProperties`
objects, one for each source.
columns : str or list of str, optional
Names of columns, in order, to include in the output
`~astropy.table.Table`. The allowed column names are any of the
attributes of `SourceProperties`.
exclude_columns : str or list of str, optional
Names of columns to exclude from the default properties list in
the output `~astropy.table.Table`. The default properties are
those with scalar values.
Returns
-------
table : `~astropy.table.Table`
A table of properties of the segmented sources, one row per
source.
See Also
--------
SegmentationImage, SourceProperties, source_properties,
:func:`photutils.detection.detect_sources`
Examples
--------
>>> import numpy as np
>>> from photutils import source_properties, properties_table
>>> image = np.arange(16.).reshape(4, 4)
>>> print(image)
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]
[ 12. 13. 14. 15.]]
>>> segm = SegmentationImage([[1, 1, 0, 0],
... [1, 0, 0, 2],
... [0, 0, 2, 2],
... [0, 2, 2, 0]])
>>> props = source_properties(image, segm)
>>> columns = ['id', 'xcentroid', 'ycentroid', 'source_sum']
>>> tbl = properties_table(props, columns=columns)
>>> print(tbl)
id xcentroid ycentroid source_sum
pix pix
--- ------------- ------------- ----------
1 0.2 0.8 5.0
2 2.09090909091 2.36363636364 55.0
"""
if isinstance(source_props, list) and len(source_props) == 0:
raise ValueError('source_props is an empty list')
source_props = np.atleast_1d(source_props)
# all scalar-valued properties
columns_all = ['id', 'xcentroid', 'ycentroid', 'ra_icrs_centroid',
'dec_icrs_centroid', 'source_sum',
'source_sum_err', 'background_sum', 'background_mean',
'background_at_centroid', 'xmin', 'xmax', 'ymin', 'ymax',
'min_value', 'max_value', 'minval_xpos', 'minval_ypos',
'maxval_xpos', 'maxval_ypos', 'area', 'equivalent_radius',
'perimeter', 'semimajor_axis_sigma',
'semiminor_axis_sigma', 'eccentricity', 'orientation',
'ellipticity', 'elongation', 'covar_sigx2',
'covar_sigxy', 'covar_sigy2', 'cxx', 'cxy', 'cyy']
table_columns = None
if exclude_columns is not None:
table_columns = [s for s in columns_all if s not in exclude_columns]
if columns is not None:
table_columns = np.atleast_1d(columns)
if table_columns is None:
table_columns = columns_all
# it's *much* faster to calculate world coordinates using the
# complete list of (x, y) instead of from the individual (x, y).
# The assumption here is that the wcs is the same for each
# element of source_props.
if ('ra_icrs_centroid' in table_columns or
'dec_icrs_centroid' in table_columns or
'icrs_centroid' in table_columns):
xcentroid = [props.xcentroid.value for props in source_props]
ycentroid = [props.ycentroid.value for props in source_props]
if source_props[0]._wcs is not None:
icrs_centroid = pixel_to_skycoord(
xcentroid, ycentroid, source_props[0]._wcs, origin=1).icrs
icrs_ra = icrs_centroid.ra.degree * u.deg
icrs_dec = icrs_centroid.dec.degree * u.deg
else:
nprops = len(source_props)
icrs_ra = [None] * nprops
icrs_dec = [None] * nprops
icrs_centroid = [None] * nprops
props_table = Table()
for column in table_columns:
if column == 'ra_icrs_centroid':
props_table[column] = icrs_ra
elif column == 'dec_icrs_centroid':
props_table[column] = icrs_dec
elif column == 'icrs_centroid':
props_table[column] = icrs_centroid
else:
values = [getattr(props, column) for props in source_props]
if isinstance(values[0], u.Quantity):
# turn list of Quantities into a Quantity array
values = u.Quantity(values)
props_table[column] = values
return props_table
|