/usr/lib/python3/dist-packages/rasterio/features.py is in python3-rasterio 0.31.0-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | """Functions for working with features in a raster dataset."""
from __future__ import absolute_import
import json
import logging
import time
import warnings
import numpy as np
import rasterio
from rasterio._features import _shapes, _sieve, _rasterize, _bounds
from rasterio.transform import IDENTITY, guard_transform
from rasterio.dtypes import validate_dtype, can_cast_dtype, get_minimum_dtype
log = logging.getLogger('rasterio')
class NullHandler(logging.Handler):
def emit(self, record):
pass
log.addHandler(NullHandler())
def geometry_mask(
geometries,
out_shape,
transform,
all_touched=False,
invert=False):
"""Create a mask from shapes. By default, mask is intended for use as a
numpy mask, where pixels that overlap shapes are False.
Parameters
----------
geometries : iterable over geometries (GeoJSON-like objects)
out_shape : tuple or list
Shape of output numpy ndarray.
transform : Affine transformation object
Transformation from pixel coordinates of `image` to the
coordinate system of the input `shapes`. See the `transform`
property of dataset objects.
all_touched : boolean, optional
If True, all pixels touched by geometries will be burned in. If
false, only pixels whose center is within the polygon or that
are selected by Bresenham's line algorithm will be burned in.
invert: boolean, optional
If True, mask will be True for pixels that overlap shapes.
False by default.
Returns
-------
out : numpy ndarray of type 'bool'
Result
"""
fill, mask_value = (0, 1) if invert else (1, 0)
return rasterize(
geometries,
out_shape=out_shape,
transform=transform,
all_touched=all_touched,
fill=fill,
default_value=mask_value).astype('bool')
def shapes(image, mask=None, connectivity=4, transform=IDENTITY):
"""
Return a generator of (polygon, value) for each each set of adjacent pixels
of the same value.
Parameters
----------
image : numpy ndarray or rasterio Band object
(RasterReader, bidx namedtuple).
Data type must be one of rasterio.int16, rasterio.int32,
rasterio.uint8, rasterio.uint16, or rasterio.float32.
mask : numpy ndarray or rasterio Band object, optional
Values of False or 0 will be excluded from feature generation
Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
connectivity : int, optional
Use 4 or 8 pixel connectivity for grouping pixels into features
transform : Affine transformation, optional
If not provided, feature coordinates will be generated based on pixel
coordinates
Returns
-------
Generator of (polygon, value)
Yields a pair of (polygon, value) for each feature found in the image.
Polygons are GeoJSON-like dicts and the values are the associated value
from the image, in the data type of the image.
Note: due to floating point precision issues, values returned from a
floating point image may not exactly match the original values.
Notes
-----
The amount of memory used by this algorithm is proportional to the number
and complexity of polygons produced. This algorithm is most appropriate
for simple thematic data. Data with high pixel-to-pixel variability, such
as imagery, may produce one polygon per pixel and consume large amounts of
memory.
"""
transform = guard_transform(transform)
with rasterio.drivers():
for s, v in _shapes(image, mask, connectivity, transform.to_gdal()):
yield s, v
def sieve(image, size, out=None, output=None, mask=None, connectivity=4):
"""
Replaces small polygons in `image` with the value of their largest
neighbor. Polygons are found for each set of neighboring pixels of the
same value.
Parameters
----------
image : numpy ndarray or rasterio Band object
(RasterReader, bidx namedtuple)
Must be of type rasterio.int16, rasterio.int32, rasterio.uint8,
rasterio.uint16, or rasterio.float32
size : int
minimum polygon size (number of pixels) to retain.
out : numpy ndarray, optional
Array of same shape and data type as `image` in which to store results.
output : older alias for `out`, will be removed before 1.0.
output : numpy ndarray, optional
mask : numpy ndarray or rasterio Band object, optional
Values of False or 0 will be excluded from feature generation
Must evaluate to bool (rasterio.bool_ or rasterio.uint8)
connectivity : int, optional
Use 4 or 8 pixel connectivity for grouping pixels into features
Returns
-------
out : numpy ndarray
Result
Notes
-----
GDAL only supports values that can be cast to 32-bit integers for this
operation.
The amount of memory used by this algorithm is proportional to the number
and complexity of polygons found in the image. This algorithm is most
appropriate for simple thematic data. Data with high pixel-to-pixel
variability, such as imagery, may produce one polygon per pixel and consume
large amounts of memory.
"""
# Start moving users over to 'out'.
if output is not None:
warnings.warn(
"The 'output' keyword arg has been superceded by 'out' "
"and will be removed before Rasterio 1.0.",
FutureWarning,
stacklevel=2) # pragma: no cover
out = out if out is not None else output
if out is None:
out = np.zeros(image.shape, image.dtype)
with rasterio.drivers():
_sieve(image, size, out, mask, connectivity)
return out
def rasterize(
shapes,
out_shape=None,
fill=0,
out=None,
output=None,
transform=IDENTITY,
all_touched=False,
default_value=1,
dtype=None):
"""
Returns an image array with input geometries burned in.
Parameters
----------
shapes : iterable of (geometry, value) pairs or iterable over
geometries. `geometry` can either be an object that implements
the geo interface or GeoJSON-like object.
out_shape : tuple or list
Shape of output numpy ndarray.
fill : int or float, optional
Used as fill value for all areas not covered by input
geometries.
out : numpy ndarray, optional
Array of same shape and data type as `image` in which to store
results.
output : older alias for `out`, will be removed before 1.0.
transform : Affine transformation object, optional
Transformation from pixel coordinates of `image` to the
coordinate system of the input `shapes`. See the `transform`
property of dataset objects.
all_touched : boolean, optional
If True, all pixels touched by geometries will be burned in. If
false, only pixels whose center is within the polygon or that
are selected by Bresenham's line algorithm will be burned in.
default_value : int or float, optional
Used as value for all geometries, if not provided in `shapes`.
dtype : rasterio or numpy data type, optional
Used as data type for results, if `out` is not provided.
Returns
-------
out : numpy ndarray
Results
Notes
-----
Valid data types for `fill`, `default_value`, `out`, `dtype` and
shape values are rasterio.int16, rasterio.int32, rasterio.uint8,
rasterio.uint16, rasterio.uint32, rasterio.float32,
rasterio.float64.
"""
valid_dtypes = (
'int16', 'int32', 'uint8', 'uint16', 'uint32', 'float32', 'float64'
)
def format_invalid_dtype(param):
return '{0} dtype must be one of: {1}'.format(
param, ', '.join(valid_dtypes)
)
def format_cast_error(param, dtype):
return '{0} cannot be cast to specified dtype: {1}'.format(param, dtype)
if fill != 0:
fill_array = np.array([fill])
if not validate_dtype(fill_array, valid_dtypes):
raise ValueError(format_invalid_dtype('fill'))
if dtype is not None and not can_cast_dtype(fill_array, dtype):
raise ValueError(format_cast_error('fill', dtype))
if default_value != 1:
default_value_array = np.array([default_value])
if not validate_dtype(default_value_array, valid_dtypes):
raise ValueError(format_invalid_dtype('default_value'))
if dtype is not None and not can_cast_dtype(default_value_array, dtype):
raise ValueError(format_cast_error('default_vaue', dtype))
if dtype is not None and np.dtype(dtype).name not in valid_dtypes:
raise ValueError(format_invalid_dtype('dtype'))
valid_shapes = []
shape_values = []
for index, item in enumerate(shapes):
if isinstance(item, (tuple, list)):
geom, value = item
else:
geom = item
value = default_value
geom = getattr(geom, '__geo_interface__', None) or geom
#not isinstance(geom, dict) or
if 'type' in geom or 'coordinates' in geom:
valid_shapes.append((geom, value))
shape_values.append(value)
else:
raise ValueError(
'Invalid geometry object at index {0}'.format(index)
)
if not valid_shapes:
raise ValueError('No valid geometry objects found for rasterize')
shape_values = np.array(shape_values)
if not validate_dtype(shape_values, valid_dtypes):
raise ValueError(format_invalid_dtype('shape values'))
if dtype is None:
dtype = get_minimum_dtype(np.append(shape_values, fill))
elif not can_cast_dtype(shape_values, dtype):
raise ValueError(format_cast_error('shape values', dtype))
if output is not None:
warnings.warn(
"The 'output' keyword arg has been superceded by 'out' "
"and will be removed before Rasterio 1.0.",
FutureWarning,
stacklevel=2) # pragma: no cover
out = out if out is not None else output
if out is not None:
if np.dtype(out.dtype).name not in valid_dtypes:
raise ValueError(format_invalid_dtype('out'))
if not can_cast_dtype(shape_values, out.dtype):
raise ValueError(format_cast_error('shape values', out.dtype.name))
elif out_shape is not None:
out = np.empty(out_shape, dtype=dtype)
out.fill(fill)
else:
raise ValueError('Either an output shape or image must be provided')
transform = guard_transform(transform)
with rasterio.drivers():
_rasterize(valid_shapes, out, transform.to_gdal(), all_touched)
return out
def bounds(geometry):
"""Returns a (minx, miny, maxx, maxy) bounding box. From Fiona 1.4.8.
Modified to return bbox from geometry if available.
Parameters
----------
geometry: GeoJSON-like feature, feature collection, or geometry.
Returns
-------
tuple
Bounding box: (minx, miny, maxx, maxy)
"""
if 'bbox' in geometry:
return tuple(geometry['bbox'])
geom = geometry.get('geometry') or geometry
return _bounds(geom)
|