This file is indexed.

/usr/lib/python2.7/dist-packages/quisk/quisk_vna.py is in quisk 3.7.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#! /usr/bin/python

# All QUISK software is Copyright (C) 2006-2011 by James C. Ahlstrom.
# This free software is licensed for use under the GNU General Public
# License (GPL), see http://www.opensource.org.
# Note that there is NO WARRANTY AT ALL.  USE AT YOUR OWN RISK!!

"""The main program for Quisk VNA, a vector network analyzer.

Usage:  python quisk_vns.py [-c | --config config_file_path]
This can also be installed as a package and run as quisk_vna.main().
"""

from __future__ import print_function

import sys, os
os.chdir(os.path.normpath(os.path.dirname(__file__)))
if sys.path[0] != "'.'":		# Make sure the current working directory is on path
  sys.path.insert(0, '.')

import wx, wx.html, wx.lib.buttons, wx.lib.stattext, wx.lib.colourdb
import math, cmath, time, traceback
import threading, webbrowser
import _quisk as QS
from types import *
from quisk_widgets import *

DEBUG = 0

# Command line parsing: be able to specify the config file.
from optparse import OptionParser
parser = OptionParser()
parser.add_option('-c', '--config', dest='config_file_path',
		help='Specify the configuration file path')
argv_options = parser.parse_args()[0]
ConfigPath = argv_options.config_file_path	# Get config file path
if not ConfigPath:	# Use default path
  if sys.platform == 'win32':
    path = os.getenv('HOMEDRIVE', '') + os.getenv('HOMEPATH', '')
    for dir in ("Documents", "My Documents", "Eigene Dateien", "Documenti"):
      ConfigPath = os.path.join(path, dir)
      if os.path.isdir(ConfigPath):
        break
    else:
      ConfigPath = os.path.join(path, "My Documents")
    ConfigPath = os.path.join(ConfigPath, "quisk_conf.py")
    if not os.path.isfile(ConfigPath):	# See if the user has a config file
      try:
        import shutil	# Try to create an initial default config file
        shutil.copyfile('quisk_conf_win.py', ConfigPath)
      except:
        pass
  else:
    ConfigPath = os.path.expanduser('~/.quisk_conf.py')

class SoundThread(threading.Thread):
  """Create a second (non-GUI) thread to read samples."""
  def __init__(self):
    self.do_init = 1
    threading.Thread.__init__(self)
    self.doQuit = threading.Event()
    self.doQuit.clear()
  def run(self):
    """Read, process, play sound; then notify the GUI thread to check for FFT data."""
    if self.do_init:	# Open sound using this thread
      self.do_init = 0
      QS.start_sound()
      wx.CallAfter(application.PostStartup)
    while not self.doQuit.isSet():
      QS.read_sound()
      wx.CallAfter(application.OnReadSound)
    QS.close_sound()
  def stop(self):
    """Set a flag to indicate that the sound thread should end."""
    self.doQuit.set()

class GraphDisplay(wx.Window):
  """Display the graph within the graph screen."""
  def __init__(self, parent, x, y, graph_width, height, chary):
    wx.Window.__init__(self, parent,
       pos = (x, y),
       size = (graph_width, height),
       style = wx.NO_BORDER)
    self.parent = parent
    self.chary = chary
    self.graph_width = graph_width
    self.line_mag = []
    self.line_phase = []
    self.line_swr = []
    self.SetBackgroundColour(conf.color_graph)
    self.Bind(wx.EVT_PAINT, self.OnPaint)
    self.Bind(wx.EVT_LEFT_DOWN, parent.OnLeftDown)
    self.Bind(wx.EVT_LEFT_UP, parent.OnLeftUp)
    self.Bind(wx.EVT_MOTION, parent.OnMotion)
    self.Bind(wx.EVT_MOUSEWHEEL, parent.OnWheel)
    self.tune_tx = graph_width / 2	# Current X position of the Tx tuning line
    self.height = 10
    self.y_min = 1000
    self.y_max = 0
    self.y_ticks = []
    self.max_height = application.screen_height
    self.tuningPenTx = wx.Pen('Red', 1)
    self.magnPen = wx.Pen('Black', 1)
    self.phasePen = wx.Pen((0, 180, 0), 1)
    self.swrPen = wx.Pen('Blue', 1)
    self.backgroundPen = wx.Pen(self.GetBackgroundColour(), 1)
    self.horizPen = wx.Pen(conf.color_gl, 1, wx.SOLID)
    if sys.platform == 'win32':
      self.Bind(wx.EVT_ENTER_WINDOW, self.OnEnter)
  def OnEnter(self, event):
    self.SetFocus()	# Set focus so we get mouse wheel events
  def OnPaint(self, event):
    dc = wx.PaintDC(self)
    x = self.tune_tx
    dc.SetPen(self.tuningPenTx)
    dc.DrawLine(x, 0, x, self.max_height)
    dc.SetPen(self.horizPen)
    for y in self.y_ticks:
      dc.DrawLine(0, y, self.graph_width, y)
    # Magnitude
    t = 'Magnitude, '
    x = self.chary
    y = self.height - self.chary
    dc.SetTextForeground(self.magnPen.GetColour())
    dc.DrawText(t, x, y)
    w, h = dc.GetTextExtent(t)
    x += w + self.chary
    # Phase
    t = 'Phase, '
    dc.SetTextForeground(self.phasePen.GetColour())
    dc.DrawText(t, x, y)
    w, h = dc.GetTextExtent(t)
    x += w + self.chary
    # SWR
    t = 'SWR'
    dc.SetTextForeground(self.swrPen.GetColour())
    dc.DrawText(t, x, y)
    w, h = dc.GetTextExtent(t)
    x += w + self.chary
    # Draw graph
    if self.line_phase:		# Phase line
      # Try to avoid drawing vertical lines when the phase goes from +180 to -180
      dc.SetPen(self.phasePen)
      top = self.y_ticks[0]
      high = self.y_ticks[1]
      low = self.y_ticks[-2]
      bottom = self.y_ticks[-1]
      old_phase = self.line_phase[0]
      line = [(0, old_phase)]
      for x in range(1, self.graph_width):
        phase = self.line_phase[x]
        if phase < high and old_phase > low:
          line.append((x-1, bottom))
          dc.DrawLines(line)
          line = [(x, top), (x, phase)]
        elif phase > low and old_phase < high:
          line.append((x-1, top))
          dc.DrawLines(line)
          line = [(x, bottom), (x, phase)]
        else:
          line.append((x, phase))
        old_phase = phase
      dc.DrawLines(line)
    if self.line_mag:		# Magnitude line
      dc.SetPen(self.magnPen)
      dc.DrawLines(self.line_mag)
    if self.line_swr:		# SWR line
      dc.SetPen(self.swrPen)
      dc.DrawLines(self.line_swr)
  def SetHeight(self, height):
    self.height = height
    self.SetSize((self.graph_width, height))
  def SetTuningLine(self, tune_tx):
    dc = wx.ClientDC(self)
    dc.SetPen(self.backgroundPen)
    dc.DrawLine(self.tune_tx, 0, self.tune_tx, self.max_height)
    dc.SetPen(self.tuningPenTx)
    dc.DrawLine(tune_tx, 0, tune_tx, self.max_height)
    self.tune_tx = tune_tx
    self.Refresh()

class GraphScreen(wx.Window):
  """Display the graph screen X and Y axis, and create a graph display."""
  def __init__(self, parent, data_width, graph_width, correct_width, correct_delta, in_splitter=0):
    wx.Window.__init__(self, parent, pos = (0, 0))
    self.in_splitter = in_splitter	# Are we in the top of a splitter window?
    self.data_width = data_width
    self.graph_width = graph_width
    self.correct_width = correct_width
    self.correct_delta = correct_delta
    self.doResize = False
    self.pen_tick = wx.Pen("Black", 1, wx.SOLID)
    self.font = wx.Font(10, wx.FONTFAMILY_SWISS, wx.NORMAL, wx.FONTWEIGHT_NORMAL, face=conf.quisk_typeface)
    self.SetFont(self.font)
    w = self.GetCharWidth() * 14 / 10
    h = self.GetCharHeight()
    self.freq_start = 1000000
    self.freq_stop  = 2000000
    self.charx = w
    self.chary = h
    self.mode = ''
    self.calibrate_open = None
    self.calibrate_short = None
    self.calibrate_load = None
    self.data_mag = []
    self.data_phase = []
    self.data_impedance = []
    self.data_reflect = []
    self.data_freq = [0] * data_width
    self.tick = max(2, h * 3 / 10)
    self.originX = w * 5
    self.offsetY = h + self.tick
    self.width = self.originX * 2 + self.graph_width + self.tick
    self.height = application.screen_height * 3 / 10
    self.x0 = self.originX + self.graph_width / 2		# center of graph
    self.originY = 10
    self.num_ticks = 8	# number of Y lines above the X axis
    self.dy_ticks = 10
    # The pixel = slope * value + zero_pixel
    # The value = (pixel - zero_pixel) / slope
    self.leftZero = 10		# y location of left zero value
    self.rightZero = 10		# y location of right zero value
    self.leftSlope = 10		# slope of left scale times 360
    self.rightSlope = 10	# slope of right scale times 360
    self.SetSize((self.width, self.height))
    self.SetSizeHints(self.width, 1, self.width)
    self.SetBackgroundColour(conf.color_graph)
    self.Bind(wx.EVT_SIZE, self.OnSize)
    self.Bind(wx.EVT_PAINT, self.OnPaint)
    self.Bind(wx.EVT_LEFT_DOWN, self.OnLeftDown)
    self.Bind(wx.EVT_LEFT_UP, self.OnLeftUp)
    self.Bind(wx.EVT_MOTION, self.OnMotion)
    self.Bind(wx.EVT_MOUSEWHEEL, self.OnWheel)
    self.display = GraphDisplay(self, self.originX, 0, self.graph_width, 5, self.chary)
  def OnPaint(self, event):
    dc = wx.PaintDC(self)
    if not self.in_splitter:
      dc.SetFont(self.font)
      self.MakeYTicks(dc)
      self.MakeXTicks(dc)
  def OnIdle(self, event):
    if self.doResize:
      self.ResizeGraph()
  def OnSize(self, event):
    self.doResize = True
    self.ClearGraph()
    event.Skip()
  def ResizeGraph(self):
    """Change the height of the graph.

    Changing the width interactively is not allowed.
    Call after changing the zero or scale to recalculate the X and Y axis marks.
    """
    w, h = self.GetClientSize()
    if self.in_splitter:	# Splitter window has no X axis scale
      self.height = h
      self.originY = h
    else:
      self.height = h - self.chary		# Leave space for X scale
      self.originY = self.height - self.offsetY
    self.MakeYScale()
    self.display.SetHeight(self.originY)
    self.doResize = False
    self.Refresh()
  def MakeYScale(self):
    chary = self.chary
    dy = self.dy_ticks = (self.originY - chary * 2) / self.num_ticks   # pixels per tick
    ytot = dy * self.num_ticks
    # Voltage dB scale
    dbs = 80	# Number of dB to display
    self.leftZero = self.originY - ytot - chary
    self.leftSlope = - ytot * 360 / dbs		# pixels per dB times 360
    # Phase scale
    self.rightSlope = - ytot			# pixels per degree times 360
    self.rightZero = self.originY - ytot / 2 - chary
    # SWR scale
    swrs = 9		# display range 1.0 to swrs
    self.swrSlope = - ytot * 360 / (swrs - 1)	# pixels per SWR unit times 360
    self.swrZero = self.originY - self.swrSlope / 360 - chary
  def MakeYTicks(self, dc):
    charx = self.charx
    chary = self.chary
    x1 = self.originX - self.tick * 3	# left of tick mark
    x2 = self.originX - 1		# x location of left y axis
    x3 = self.originX + self.graph_width	# end of graph data
    x4 = x3 + 1				# right y axis
    x5 = x3 + self.tick * 3		# right tick mark
    dc.SetPen(self.pen_tick)
    dc.DrawLine(x2, 0, x2, self.originY + 1)	# y axis
    dc.DrawLine(x4, 0, x4, self.originY + 1)	# y axis
    y = self.leftZero
    del self.display.y_ticks[:]
    for i in range(self.num_ticks + 1):
      # Create the dB scale
      val = (y - self.leftZero) * 360 / self.leftSlope
      t = str(val)
      dc.DrawLine(x1, y, x2, y)
      self.display.y_ticks.append(y)
      w, h = dc.GetTextExtent(t)
      dc.DrawText(t, x1 - w, y - h / 2)
      # Create the scale on the right
      val = (y - self.rightZero) * 360 / self.rightSlope
      t = str(val)
      dc.DrawLine(x4, y, x5, y)
      w, h = dc.GetTextExtent(t)
      dc.DrawText(t, self.width - w - charx, y - h / 2 + 3)	# right text
      y += self.dy_ticks
    # Create the SWR scale
    if self.mode == 'Refl':
      y = self.leftZero
      dc.SetTextForeground(self.display.swrPen.GetColour())
      for i in range(self.num_ticks + 1):
        val = (y - self.swrZero) * 360 / self.swrSlope
        t = str(val)
        w, h = dc.GetTextExtent(t)
        dc.DrawText(t, w/2, y - h / 2)
        y += self.dy_ticks
  def MakeXTicks(self, dc):
    originY = self.originY
    x3 = self.originX + self.graph_width	# end of fft data
    charx , z = dc.GetTextExtent('-30000XX')
    tick0 = self.tick
    tick1 = tick0 * 2
    tick2 = tick0 * 3
    # Draw the X axis
    dc.SetPen(self.pen_tick)
    dc.DrawLine(self.originX, originY, x3, originY)
    sample_rate = int(self.freq_stop - self.freq_start)
    if sample_rate < 12000:
      return
    VFO = int((self.freq_start + self.freq_stop) / 2)
    # Draw the band plan colors below the X axis
    x = self.originX
    f = float(x - self.x0) * sample_rate / self.data_width
    c = None
    y = originY + 1
    for freq, color in conf.BandPlan:
      freq -= VFO
      if f < freq:
        xend = int(self.x0 + float(freq) * self.data_width / sample_rate + 0.5)
        if c is not None:
          dc.SetPen(wx.TRANSPARENT_PEN)
          dc.SetBrush(wx.Brush(c))
          dc.DrawRectangle(x, y, min(x3, xend) - x, tick0)  # x axis
        if xend >= x3:
          break
        x = xend
        f = freq
      c = color
    stick =  1000		# small tick in Hertz
    mtick =  5000		# medium tick
    ltick = 10000		# large tick
    # check the width of the frequency label versus frequency span
    df = float(charx) * sample_rate / self.data_width	# max label freq in Hertz
    df *= 2.0
    df = math.log10(df)
    expn = int(df)
    mant = df - expn
    if mant < 0.3:	# label every 10
      tfreq = 10 ** expn
      ltick = tfreq
      mtick = ltick / 2
      stick = ltick / 10
    elif mant < 0.69:	# label every 20
      tfreq = 2 * 10 ** expn
      ltick = tfreq / 2
      mtick = ltick / 2
      stick = ltick / 10
    else:		# label every 50
      tfreq = 5 * 10 ** expn
      ltick = tfreq
      mtick = ltick / 5
      stick = ltick / 10
    # Draw the X axis ticks and frequency in kHz
    dc.SetPen(self.pen_tick)
    freq1 = VFO - sample_rate / 2
    freq1 = (freq1 / stick) * stick
    freq2 = freq1 + sample_rate + stick + 1
    y_end = 0
    for f in range (freq1, freq2, stick):
      x = self.x0 + int(float(f - VFO) / sample_rate * self.data_width)
      if self.originX <= x <= x3:
        if f % ltick is 0:		# large tick
          dc.DrawLine(x, originY, x, originY + tick2)
        elif f % mtick is 0:	# medium tick
          dc.DrawLine(x, originY, x, originY + tick1)
        else:					# small tick
          dc.DrawLine(x, originY, x, originY + tick0)
        if f % tfreq is 0:		# place frequency label
          t = str(f/1000)
          w, h = dc.GetTextExtent(t)
          dc.DrawText(t, x - w / 2, originY + tick2)
          y_end = originY + tick2 + h
    if y_end:		# mark the center of the display
      dc.DrawLine(self.x0, y_end, self.x0, application.screen_height)
  def ClearGraph(self):
    del self.display.line_mag[:]
    del self.display.line_phase[:]
    del self.display.line_swr[:]
    del self.data_mag[:]
    del self.data_phase[:]
    del self.data_impedance[:]
    del self.data_reflect[:]
    self.display.Refresh()
  def SetMode(self, mode):
    self.mode = mode
    if mode == 'Cal Remove':
      self.calibrate_open = None
      self.calibrate_short = None
      self.calibrate_load = None
      self.ClearGraph()
  def SetCorrections(self):
    if self.calibrate_short is not None and self.calibrate_open is not None:
      v8 = []
      for i in range(self.correct_width):
        v8.append((self.calibrate_short[i] - self.calibrate_open[i]) / 2)
      openn = self.calibrate_open[:]
      short = self.calibrate_short[:]
    elif self.calibrate_short is not None:
      v8 = self.calibrate_short[:]
      short = v8
      openn = [0] * self.correct_width
    elif self.calibrate_open is not None:
      v8 = []
      for i in range(self.correct_width):
        v8.append( - self.calibrate_open[i])
      openn = self.calibrate_open[:]
      short = [1] * self.correct_width
    else:
      return
    v8.append(v8[-1])
    openn.append(openn[-1])
    short.append(short[-1])
    delta = self.correct_delta
    self.correct_v8 = []
    self.correct_open = []
    self.correct_short = []
    for x in range(self.data_width):
      # Find the frequency for this pixel
      freq = self.data_freq[x]
      # Find the corresponding index into the correction array
      i = int(freq / delta)
      if i >= self.correct_width:
        i = self.correct_width - 1
      # linear interpolation
      dd = float(freq - i * delta) / delta
      c = v8[i] + (v8[i+1] - v8[i]) * dd
      self.correct_v8.append(c)
      c = openn[i] + (openn[i+1] - openn[i]) * dd
      self.correct_open.append(c)
      c = short[i] + (short[i+1] - short[i]) * dd
      self.correct_short.append(c)
    if DEBUG and self.calibrate_short is not None and self.calibrate_open is not None and self.calibrate_load is not None:
      for index in range(500, 3500, 500):
         freq = delta * index
         Vs = self.calibrate_short[index]
         Vo = self.calibrate_open[index]
         Vl = self.calibrate_load[index]
         Zs = 25 * (Vs - Vl) / Vl
         Zd = 50.0 * ( -5 * Vo * Zs - 55 * Vo + 150 * Vs - 3 * Vs * Zs) / (
               250 * Vo + 3 * Zs * Vo - 250 * Vs + 5 * Vs * Zs)
         #Zx = 250.0 * Zs * (Zd + 30) * (Vs - Vx) / (
         #            5 * Vs * (Zd + 30) * (Zs - 50) + Vx * (250 * (Zs + Zd + 30) + 3 * Zs * Zd))
         print('freq', freq * 1E-6)
         print('Zs', Zs)
         print('Zd', Zd)
         #print 'Zx', Zx
  def OnGraphData(self, volts):
    # Z = 50 * (V8 - v) / (V8 + v)
    # v = V8 * (50 - z) / (50 + z)
    # SWR = (1 + rho) / (1 - rho)
    # Create graph lines
    mode = self.mode
    del self.display.line_mag[:]
    del self.display.line_phase[:]
    del self.display.line_swr[:]
    del self.data_mag[:]
    del self.data_phase[:]
    del self.data_impedance[:]
    del self.data_reflect[:]
    if mode == 'Cal Open':
      self.calibrate_open = volts[:]
    elif mode == 'Cal Short':
      self.calibrate_short = volts[:]
    elif mode == 'Cal Load':
      self.calibrate_load = volts[:]
    use_load = self.calibrate_short is not None and self.calibrate_open is not None and self.calibrate_load is not None
    if mode[0:4] == 'Cal ':
      for x in range(self.graph_width):
        self.data_impedance.append(50)
        self.data_reflect.append(0)
        i = x * self.correct_width / self.data_width
        magn = abs(volts[i])
        phase = cmath.phase(volts[i]) * 360. / (2.0 * math.pi)
        if magn < 1e-6:
          db = -120.0
        else:
          db = 20.0 * math.log10(magn)
        self.data_mag.append(db)
        y = self.leftZero - int( - db * self.leftSlope / 360.0 + 0.5)
        self.display.line_mag.append((x, y))
        self.data_phase.append(phase)
        y = self.rightZero - int( - phase * self.rightSlope / 360.0 + 0.5)
        y = int(y)
        self.display.line_phase.append(y)
    elif mode == 'Refl':
      for x in range(self.graph_width):
        if use_load:		# Use a fancy correction baed on the load calibration
          delta = self.correct_delta
          # Find the frequency for this pixel
          freq = self.data_freq[x]
          # Find the corresponding index into the correction array
          i = int(freq / delta)
          if i >= self.correct_width:
            i = self.correct_width - 1
          Vx = volts[x]
          # linear interpolation
          dd = float(freq - i * delta) / delta
          Vs = self.calibrate_short[i] + (self.calibrate_short[i+1] - self.calibrate_short[i]) * dd
          Vo = self.calibrate_open[i] + (self.calibrate_open[i+1] - self.calibrate_open[i]) * dd
          Vl = self.calibrate_load[i] + (self.calibrate_load[i+1] - self.calibrate_load[i]) * dd
          try:
            Zs = 25 * (Vs - Vl) / Vl
            Zd = 50.0 * ( -5 * Vo * Zs - 55 * Vo + 150 * Vs - 3 * Vs * Zs) / (
                 250 * Vo + 3 * Zs * Vo - 250 * Vs + 5 * Vs * Zs)
            Z  = 250.0 * Zs * (Zd + 30) * (Vs - Vx) / (
                        5 * Vs * (Zd + 30) * (Zs - 50) + Vx * (250 * (Zs + Zd + 30) + 3 * Zs * Zd))
            reflect = (Z - 50) / (Z + 50)
          except:
            if DEBUG: traceback.print_exc()
            reflect = volts[x] / self.correct_v8[x]	#  reflection coefficient
            try:
              Z = 50.0 * (self.correct_v8[x] - volts[x]) / (self.correct_v8[x] + volts[x])
            except ZeroDivisionError:
              Z = 50E3
        else:
          reflect = volts[x] / self.correct_v8[x]	#  reflection coefficient
          try:
            Z = 50.0 * (self.correct_v8[x] - volts[x]) / (self.correct_v8[x] + volts[x])
          except ZeroDivisionError:
            Z = 50E3
        self.data_reflect.append(reflect)
        self.data_impedance.append(Z)
        magn = abs(reflect)
        swr = (1.0 + magn) / (1.0 - magn)
        if not 0.999 <= swr <= 99:
          swr = 99.0
        if magn < 1e-6:
          db = -120.0
        else:
          db = 20.0 * math.log10(magn)
        self.data_mag.append(db)
        y = self.leftZero - int( - db * self.leftSlope / 360.0 + 0.5)
        self.display.line_mag.append((x, y))
        phase = cmath.phase(reflect) * 360. / (2.0 * math.pi)
        self.data_phase.append(phase)
        y = self.rightZero - int( - phase * self.rightSlope / 360.0 + 0.5)
        y = int(y)
        self.display.line_phase.append(y)
        y = self.swrZero - int( - swr * self.swrSlope / 360.0 + 0.5)
        self.display.line_swr.append((x,y))
    else:
      for x in range(self.graph_width):
        self.data_impedance.append(50)
        reflect = (volts[x] - self.correct_open[x]) / self.correct_short[x]
        self.data_reflect.append(reflect)
        magn = abs(reflect)
        if magn < 1e-6:
          db = -120.0
        else:
          db = 20.0 * math.log10(magn)
        self.data_mag.append(db)
        y = self.leftZero - int( - db * self.leftSlope / 360.0 + 0.5)
        self.display.line_mag.append((x, y))
        phase = cmath.phase(reflect) * 360. / (2.0 * math.pi)
        self.data_phase.append(phase)
        y = self.rightZero - int( - phase * self.rightSlope / 360.0 + 0.5)
        y = int(y)
        self.display.line_phase.append(y)
    self.display.Refresh()
  def NewFreq(self, start, stop):
    if self.freq_start != start or self.freq_stop != stop:
      self.ClearGraph()
    self.freq_start = start
    self.freq_stop = stop
    for i in range(self.data_width):	# The frequency in Hertz for every pixel
      self.data_freq[i] = int(start + float(stop - start) * i / (self.data_width - 1) + 0.5)
    self.SetCorrections()
    self.SetTxFreq(index=self.display.tune_tx)
    self.doResize = True
  def SetTxFreq(self, freq=None, index=None):
    if index is None:
      index = int(float(freq - self.freq_start) * (self.data_width - 1) / (self.freq_stop - self.freq_start) + 0.5)
    if index < 0:
      index = 0
    elif index >= self.data_width:
      index = self.data_width - 1
    if freq is None:
      freq = self.data_freq[index]
    self.display.SetTuningLine(index)
    application.ShowFreq(freq, index)
  def GetMousePosition(self, event):
    """For mouse clicks in our display, translate to our screen coordinates."""
    mouse_x, mouse_y = event.GetPositionTuple()
    win = event.GetEventObject()
    if win is not self:
      x, y = win.GetPositionTuple()
      mouse_x += x
      mouse_y += y
    return mouse_x, mouse_y
  def OnLeftDown(self, event):
    mouse_x, mouse_y = self.GetMousePosition(event)
    self.SetTxFreq(index=mouse_x - self.originX)
    self.CaptureMouse()
  def OnLeftUp(self, event):
    if self.HasCapture():
      self.ReleaseMouse()
  def OnMotion(self, event):
    if event.Dragging() and event.LeftIsDown():
      mouse_x, mouse_y = self.GetMousePosition(event)
      self.SetTxFreq(index=mouse_x - self.originX)
  def OnWheel(self, event):
    tune = self.display.tune_tx + event.GetWheelRotation() / event.GetWheelDelta()
    self.SetTxFreq(index=tune)

class HelpScreen(wx.html.HtmlWindow):
  """Create the screen for the Help button."""
  def __init__(self, parent, width, height):
    wx.html.HtmlWindow.__init__(self, parent, -1, size=(width, height))
    if "gtk2" in wx.PlatformInfo:
      self.SetStandardFonts()
    self.SetFonts("", "", [10, 12, 14, 16, 18, 20, 22])
    # read in text from file help.html in the directory of this module
    self.LoadFile('help_vna.html')
  def OnLinkClicked(self, link):
    webbrowser.open(link.GetHref(), new=2)

class QMainFrame(wx.Frame):
  """Create the main top-level window."""
  def __init__(self, width, height):
    title = 'Quisk Vector Network Analyzer'
    wx.Frame.__init__(self, None, -1, title, wx.DefaultPosition,
        (width, height), wx.DEFAULT_FRAME_STYLE, 'MainFrame')
    self.SetBackgroundColour(conf.color_bg)
    self.Bind(wx.EVT_CLOSE, self.OnBtnClose)
  def OnBtnClose(self, event):
    application.OnBtnClose(event)
    self.Destroy()

class Spacer(wx.Window):
  """Create a bar between the graph screen and the controls"""
  def __init__(self, parent):
    wx.Window.__init__(self, parent, pos = (0, 0),
       size=(-1, 6), style = wx.NO_BORDER)
    self.Bind(wx.EVT_PAINT, self.OnPaint)
    r, g, b = parent.GetBackgroundColour().Get()
    dark = (r * 7 / 10, g * 7 / 10, b * 7 / 10)
    light = (r + (255 - r) * 5 / 10, g + (255 - g) * 5 / 10, b + (255 - b) * 5 / 10)
    self.dark_pen = wx.Pen(dark, 1, wx.SOLID)
    self.light_pen = wx.Pen(light, 1, wx.SOLID)
    self.width = application.screen_width
  def OnPaint(self, event):
    dc = wx.PaintDC(self)
    w = self.width
    dc.SetPen(self.dark_pen)
    dc.DrawLine(0, 0, w, 0)
    dc.DrawLine(0, 1, w, 1)
    dc.DrawLine(0, 2, w, 2)
    dc.SetPen(self.light_pen)
    dc.DrawLine(0, 3, w, 3)
    dc.DrawLine(0, 4, w, 4)
    dc.DrawLine(0, 5, w, 5)

class App(wx.App):
  """Class representing the application."""
  StateNames =[]
  def __init__(self):
    global application
    application = self
    self.bottom_widgets = None
    self.is_vna_program = None
    if sys.stdout.isatty():
      wx.App.__init__(self, redirect=False)
    else:
      wx.App.__init__(self, redirect=True)
  def OnInit(self):
    """Perform most initialization of the app here (called by wxPython on startup)."""
    wx.lib.colourdb.updateColourDB()	# Add additional color names
    import quisk_widgets		# quisk_widgets needs the application object
    quisk_widgets.application = self
    del quisk_widgets
    global conf		# conf is the module for all configuration data
    import quisk_conf_defaults as conf
    setattr(conf, 'config_file_path', ConfigPath)
    if os.path.isfile(ConfigPath):	# See if the user has a config file
      setattr(conf, 'config_file_exists', True)
      d = {}
      d.update(conf.__dict__)		# make items from conf available
      exec(compile(open(ConfigPath).read(), ConfigPath, 'exec'), d)		# execute the user's config file
      for k, v in d.items():		# add user's config items to conf
        if k[0] != '_':				# omit items starting with '_'
          setattr(conf, k, v)
    else:
      setattr(conf, 'config_file_exists', False)
    self.graph_freq = 7e6
    self.graph_index = 50
    # Open hardware file
    self.firmware_version = None
    global Hardware
    if hasattr(conf, "Hardware"):	# Hardware defined in config file
      Hardware = conf.Hardware(self, conf)
    else:
      Hardware = conf.quisk_hardware.Hardware(self, conf)
    # Initialization
    # get the screen size
    x, y, self.screen_width, self.screen_height = wx.Display().GetGeometry()
    self.Bind(wx.EVT_QUERY_END_SESSION, self.OnEndSession)
    self.sample_rate = 48000
    self.timer = time.time()		# A seconds clock
    self.time0 = 0			# timer to display fields
    self.clip_time0 = 0			# timer to display a CLIP message on ADC overflow
    self.heart_time0 = self.timer	# timer to call HeartBeat at intervals
    self.status_text = 'Freq '
    self.running = False
    self.save_data = []
    # correct_delta is the spacing of correction points in Hertz
    self.correct_delta = 15000
    self.max_freq = 60000000	# maximum calculation frequency
    self.correct_width = self.max_freq / self.correct_delta + 4		# number of data points in the correct arrays
    # Find the data width, the width of returned graph data.
    width = self.screen_width * conf.graph_width
    width = int(width)
    self.data_width = width
    self.main_frame = frame = QMainFrame(10, 10)
    self.SetTopWindow(frame)
    # Record the basic application parameters
    if sys.platform == 'win32':
      h = self.main_frame.GetHandle()
    else:
      h = 0
    # FFT size must equal the data_width so that all data points are returned!
    QS.record_app(self, conf, self.data_width, self.data_width,
                 1, self.sample_rate, h)
    # Make all the screens and hide all but one
    self.graph = GraphScreen(frame, self.data_width, self.data_width, self.correct_width, self.correct_delta)
    self.screen = self.graph
    width = self.graph.width
    self.help_screen = HelpScreen(frame, width, self.screen_height / 10)
    self.help_screen.Hide()
    # Make a vertical box to hold all the screens and the bottom rows
    vertBox = self.vertBox = wx.BoxSizer(wx.VERTICAL)
    frame.SetSizer(vertBox)
    # Add the screens
    vertBox.Add(self.graph, 1)
    vertBox.Add(self.help_screen, 1)
    # Add the spacer
    vertBox.Add(Spacer(frame), 0, wx.EXPAND)
    # Add the sizers for the buttons
    szr1 = wx.BoxSizer(wx.HORIZONTAL)
    szr2 = wx.BoxSizer(wx.HORIZONTAL)
    vertBox.Add(szr1, 0, wx.EXPAND, 0)
    vertBox.Add(szr2, 0, wx.EXPAND, 0)
    # Make the buttons in row 1
    buttons1 = []
    self.group_screen = RadioButtonGroup(frame, self.OnBtnScreen, ('Trans', 'Refl', 'Help'), 'Refl')
    buttons1 += self.group_screen.buttons
    self.btn_run = b = QuiskCheckbutton(frame, self.OnBtnRun, 'Run')
    buttons1.append(b)
    b = QuiskCheckbutton(frame, self.OnBtnCal, 'Cal Open')
    buttons1.append(b)
    b = QuiskCheckbutton(frame, self.OnBtnCal, 'Cal Short')
    buttons1.append(b)
    b = self.btn_calload = QuiskCheckbutton(frame, self.OnBtnCal, 'Cal Load')
    buttons1.append(b)
    b = QuiskPushbutton(frame, self.OnBtnCal, 'Cal Remove')
    buttons1.append(b)
    width = 0
    for b in buttons1[0:4]:
      w, height = b.GetMinSize()
      if width < w:
        width = w
    for i in range(24, 8, -2):
      font = wx.Font(i, wx.FONTFAMILY_SWISS, wx.NORMAL, wx.FONTWEIGHT_NORMAL, face=conf.quisk_typeface)
      frame.SetFont(font)
      w, h = frame.GetTextExtent('Start   ')
      if h < height * 9 / 10:
        break
    for b in buttons1[0:4]:
      b.SetMinSize((width, height))
    # Text status
    style = wx.ST_NO_AUTORESIZE
    i = 0
    for t in ('No hardware response        ', 'Error in rates        ',
           'Mag -1100.12 dB     ', 'Phase -1800.12     ', 'SWR 555.1     ',
           '0'):
      c = wx.lib.stattext.GenStaticText(frame, -1, t, style=style)
      setattr(self, "t_field%d" % i, c)
      c.SetBackgroundColour(conf.color_bg)
      w, h = c.GetSizeTuple()
      c.SetMinSize((w, -1))
      if i == 5:
        szr2.Add(c, 1, wx.ALIGN_CENTER_VERTICAL)
      else:
        szr2.Add(c, 0, wx.ALIGN_CENTER_VERTICAL)
      i += 1
    # Frequency entry start and stop
    t = wx.lib.stattext.GenStaticText(frame, -1, 'Start  ')
    t.SetFont(font)
    t.SetBackgroundColour(conf.color_bg)
    gap = max(2, height/8)
    freq0 = t
    e = wx.TextCtrl(frame, -1, '1', style=wx.TE_PROCESS_ENTER)
    e.SetFont(font)
    w, h = e.GetSizeTuple()
    e.SetMinSize((-1, height))
    e.SetBackgroundColour(conf.color_entry)
    self.freq_start_ctrl = e
    frame.Bind(wx.EVT_TEXT_ENTER, self.OnNewFreq, source=e)
    frame.Bind(wx.EVT_TEXT, self.OnNewFreq, source=e)
    t = wx.lib.stattext.GenStaticText(frame, -1, 'Stop  ')
    t.SetFont(font)
    t.SetBackgroundColour(conf.color_bg)
    freq2 = t
    e = wx.TextCtrl(frame, -1, '30', style=wx.TE_PROCESS_ENTER)
    e.SetFont(font)
    e.SetMinSize((-1, height))
    e.SetBackgroundColour(conf.color_entry)
    self.freq_stop_ctrl = e
    frame.Bind(wx.EVT_TEXT_ENTER, self.OnNewFreq, source=e)
    frame.Bind(wx.EVT_TEXT, self.OnNewFreq, source=e)
    # Band buttons
    ilst = []
    slst = []
    for l in conf.BandEdge.keys():	# Sort keys
      try:
        ilst.append((int(l), conf.BandEdge[l]))
      except ValueError:	# item is a string, not an integer
        slst.append((l, conf.BandEdge[l]))
    ilst.sort()
    ilst.reverse()
    slst.sort()
    band = []
    width = 0
    for l in ilst + slst:
      b = QuiskPushbutton(frame, self.OnBtnBand, str(l[0]))
      b.bandEdge = l[1]
      band.append(b)
      w, h= b.GetMinSize()
      if width < w:
        width = w
    #for b in band:
    #  b.SetMinSize((width, height))
    # make a list of all buttons
    self.buttons = buttons1 + band
    # Add first button row to sizer
    gap = max(2, height / 8)
    gap2 = max(2, height / 4)
    szr1.Add(buttons1[0], 0, wx.RIGHT|wx.LEFT, gap)
    szr1.Add(buttons1[1], 0, wx.RIGHT, gap)
    szr1.Add(buttons1[2], 0, wx.RIGHT, gap)
    szr1.Add(buttons1[3], 0, wx.RIGHT|wx.LEFT, gap2)
    szr1.Add(buttons1[4], 0, wx.RIGHT|wx.LEFT, gap)
    szr1.Add(buttons1[5], 0, wx.RIGHT, gap)
    szr1.Add(buttons1[6], 0, wx.RIGHT, gap)
    szr1.Add(buttons1[7], 0, wx.RIGHT, gap)
    szr1.Add(freq0, 0, wx.ALIGN_CENTER_VERTICAL)
    szr1.Add(self.freq_start_ctrl, 1, wx.RIGHT, gap)
    szr1.Add(freq2, 0, wx.ALIGN_CENTER_VERTICAL)
    szr1.Add(self.freq_stop_ctrl, 1, wx.RIGHT, gap)
    for x in band:
      szr1.Add(x, 0, wx.RIGHT, gap)
    # Set top window size
    self.main_frame.SetClientSizeWH(self.graph.width, self.screen_height * 5 / 10)
    # Open the hardware.  This must be called before open_sound().
    self.config_text = Hardware.open()
    if not self.config_text:
      self.config_text = "Missing config_text"
    if hasattr(Hardware, 'SetVNA'):
      self.has_SetVNA = True
    else:
      self.has_SetVNA = False
    # Note: Subsequent calls to set channels must not name a higher channel number.
    #       Normally, these calls are only used to reverse the channels.
    QS.open_sound(conf.name_of_sound_capt, '', self.sample_rate,
                conf.data_poll_usec, conf.latency_millisecs,
                '', conf.tx_ip, conf.tx_audio_port,
                48000, 0, 0, 1.0, '', 48000)
    self.Bind(wx.EVT_IDLE, self.graph.OnIdle)
    frame.Show()
    self.Yield()
    if self.has_SetVNA:
      Hardware.SetVNA(key_down=0, vna_count=self.data_width)
    self.OnNewFreq()
    self.WriteFields()
    self.EnableButtons()
    QS.set_fdx(1)
    QS.set_rx_mode(0)
    self.sound_thread = SoundThread()
    self.sound_thread.start()
    return True
  def OnEndSession(self, event):
    event.Skip()
    self.OnBtnClose(event)
  def OnBtnClose(self, event):
    if self.sound_thread:
      self.sound_thread.stop()
    for i in range(0, 20):
      if threading.activeCount() == 1:
        break
      time.sleep(0.1)
  def OnBtnBand(self, event):
    btn = event.GetEventObject()
    start, stop = btn.bandEdge
    start = float(start) * 1e-6
    stop = float(stop) * 1e-6
    self.freq_start_ctrl.SetValue(str(start))
    self.freq_stop_ctrl.SetValue(str(stop))
  def OnBtnCal(self, event):
    btn = event.GetEventObject()
    mode = btn.GetLabel()
    self.btn_run.SetValue(0)
    self.graph.SetMode(mode)
    if mode == 'Cal Remove':
      self.running = False
      self.btn_run.Enable(0)
      self.graph.SetCorrections()
      self.SetField0()
    elif btn.GetValue():
      for b in self.buttons:
        if b != btn:
          b.Enable(0)
      self.btn_run.Enable(0)
      self.NewFreq(0, self.max_freq)
      if self.has_SetVNA:
        count = self.correct_width
        max_freq = self.correct_delta * count
        Hardware.SetVNA(key_down=1, vna_start=0, vna_stop=max_freq, vna_count=count)
      self.running = True
    else:
      self.running = False
      for b in self.buttons:
        b.Enable(1)
      self.graph.SetCorrections()
      self.SetField0()
      if self.has_SetVNA:
        Hardware.SetVNA(key_down=0, vna_count=self.data_width)
      self.EnableButtons()
  def OnBtnScreen(self, event):
    btn = event.GetEventObject()
    screen = btn.GetLabel()
    if screen == 'Help':
      self.help_screen.Show()
      self.graph.Hide()
    else:
      self.help_screen.Hide()
      self.graph.Show()
      self.graph.SetMode(screen)
    self.vertBox.Layout()
    self.EnableButtons()
  def OnBtnRun(self, event):
    btn = event.GetEventObject()
    run = btn.GetValue()
    self.graph.SetMode(self.group_screen.GetLabel())
    self.OnNewFreq()
    if self.has_SetVNA:
      if run:
        self.running = True
        Hardware.SetVNA(key_down=1)
      else:
        self.running = False
        Hardware.SetVNA(key_down=0)
  def EnableButtons(self):
    mode = self.group_screen.GetLabel()
    if mode == 'Trans':
      self.btn_calload.Enable(0)
      if self.graph.calibrate_short is not None:
        self.btn_run.Enable(1)
      else:
        self.btn_run.Enable(0)
    else:		# Refl
      self.btn_calload.Enable(1)
      if self.graph.calibrate_short is not None or self.graph.calibrate_open is not None:
        self.btn_run.Enable(1)
      else:
        self.btn_run.Enable(0)
  def ShowFreq(self, freq, index):
    if hasattr(Hardware, 'ChangeFilterFrequency'):
      Hardware.ChangeFilterFrequency(freq)
    self.graph_freq = freq
    self.graph_index = index
    self.status_text = "Freq %9.6f" % (freq * 1.E-6)
    if self.t_field1.GetLabel()[0:5] == 'Freq ':
      self.t_field1.SetLabel(self.status_text)
    self.WriteFields()
  def OnNewFreq(self, event=None):
    try:
      start = self.freq_start_ctrl.GetValue()
      start = float(start) * 1e6
      stop = self.freq_stop_ctrl.GetValue()
      stop = float(stop) * 1e6
    except:
      self.t_field1.SetLabel("Error in rates")
      #traceback.print_exc()
      return
    start = int(start + 0.5)
    stop = int(stop + 0.5)
    if start > stop:
      self.t_field1.SetLabel("Error in rates")
      return
    if stop > self.max_freq:
      stop = self.max_freq
      self.freq_stop_ctrl.SetValue("%.6f" % (stop * 1.E-6))
    self.NewFreq(start, stop)
  def NewFreq(self, start, stop):
    if application.has_SetVNA:
      start, stop = Hardware.SetVNA(vna_start=start, vna_stop=stop)
    self.freq_start = start
    self.freq_stop = stop
    self.t_field1.SetLabel(self.status_text)
    self.graph.NewFreq(start, stop)
  def SetField0(self):
    if self.firmware_version is None:
      text = "No hardware response"
    elif self.firmware_version < 3:
      text = "Need firmware ver 3 "
    else:
      text = ''
      if self.graph.calibrate_open is not None:
        text = text + 'Op'
      if self.graph.calibrate_short is not None:
        text = text + 'Sh'
      if self.graph.calibrate_load is not None:
        text = text + 'Lo'
      if text:
        text = 'Calibration ' + text
      else:
        text = 'Calibration None'
    self.t_field0.SetLabel(text)
  def WriteFields(self):
    if not self.graph.data_mag:
      self.t_field2.SetLabel('')
      self.t_field3.SetLabel('')
      self.t_field4.SetLabel('')
      self.t_field5.SetLabel('')
      return
    index = self.graph_index
    if index < 0:
      index = 0
    elif index >= self.data_width:
      index = self.data_width - 1
    mode = self.graph.mode
    if mode in ('Cal Open', 'Cal Short', ''):
      db = self.graph.data_mag[index]
      phase = self.graph.data_phase[index]
      self.t_field2.SetLabel('Mag %7.2f dB' % db)
      self.t_field3.SetLabel('Phase %6.1f' % phase)
      self.t_field4.SetLabel('')
      self.t_field5.SetLabel('')
    elif mode == 'Trans':
      db = self.graph.data_mag[index]
      phase = self.graph.data_phase[index]
      aref = abs(self.graph.data_reflect[index])
      self.t_field2.SetLabel('Mag %8.2f dB' % db)
      self.t_field3.SetLabel('Phase %8.2f' % phase)
      self.t_field4.SetLabel('')
      self.t_field5.SetLabel('')
    elif mode == 'Refl':
      db = self.graph.data_mag[index]
      phase = self.graph.data_phase[index]
      aref = abs(self.graph.data_reflect[index])
      swr = (1.0 + aref) / (1.0 - aref)
      if not 0.999 <= swr <= 99:
        swr = 99.0
      self.t_field2.SetLabel('Mag %7.2f dB' % db)
      self.t_field3.SetLabel('Phase %6.1f' % phase)
      self.t_field4.SetLabel('SWR %6.1f' % swr)
      Z = self.graph.data_impedance[index]
      mag = abs(Z)
      phase = cmath.phase(Z) * 360. / (2.0 * math.pi)
      freq = self.graph.data_freq[index]
      im = Z.imag
      text = '    Imped %8.1f  %8.1f J    Mag %7.2f  Phase %6.1f' % (Z.real, im, mag, phase)
      if im >= 0.5:
        L = im / (2.0 * math.pi * freq) * 1e9
        text += '    L %10.0f nH' % L
      elif im < -0.5:
        C = -1.0 / (2.0 * math.pi * freq * im) * 1e9
        text += '    C %10.3f nF' % C
      self.t_field5.SetLabel(text)
  def OnExit(self):
    if self.has_SetVNA:
      Hardware.SetVNA(key_down=0, do_tx=True)
    time.sleep(0.5)
    QS.close_rx_udp()
    Hardware.close()
  def PostStartup(self):	# called once after sound attempts to start
    pass
  def OnReadSound(self):	# called at frequent intervals
    self.timer = time.time()
    dat = QS.get_graph(0, 1.0, 0)
    if dat and self.running:
      dat = list(dat)
      try:
        start = dat.index(0)
      except ValueError:
        self.save_data += dat
        return
      data = self.save_data + dat[0:start]
      self.save_data = dat[start+1:]
      if self.graph.mode[0:3] == 'Cal':
        if len(data) != self.correct_width:
          if DEBUG: print('  bad data array', len(data), self.correct_width)
          return
      else:
        if len(data) != self.data_width:
          if DEBUG: print('  bad data array', len(data), self.data_width)
          return
      #print "%10.2f  %12.8f %10.2f %10.2f %10.2f" % (cmath.phase(data[0]) * 360. / (2.0 * math.pi), abs(data[0]) / 2147483647.0,
      # cmath.phase(data[0]) * 360. / (2.0 * math.pi), cmath.phase(data[0]) * 360. / (2.0 * math.pi), cmath.phase(data[0]) * 360. / (2.0 * math.pi))
      for i in range(len(data)):
        data[i] /= 2147483647.0
      self.graph.OnGraphData(data)
    if QS.get_overrange():
      self.clip_time0 = self.timer
      self.t_field1.SetLabel("CLIP")
    if self.clip_time0:
      if self.timer - self.clip_time0 > 1.0:
        self.clip_time0 = 0
        self.t_field1.SetLabel(self.status_text)
    if self.timer - self.heart_time0 > 0.10:		# call hardware to perform background tasks
      self.heart_time0 = self.timer
      Hardware.HeartBeat()
      if self.firmware_version is None and conf.use_rx_udp:
        self.firmware_version = Hardware.GetFirmwareVersion()
        self.SetField0()
    # Set text fields
    if  self.timer - self.time0 > 0.5:
      self.time0 = self.timer
      #print "len %5d  re %9.6f  im %9.6f  mag %9.6f  phase %7.2f" % (len(data),
      #   volts.real, volts.imag, abs(volts), phase)
      #print "Z re %12.2f  im %12.2f  mag %12.2f  phase %7.2f" % (zzz.real, zzz.imag,
      #  abs(zzz), cmath.phase(zzz) * 360. / (2.0 * math.pi))
      self.WriteFields()

def main():
  """If quisk is installed as a package, you can run it with quisk.main()."""
  App()
  application.MainLoop()

if __name__ == '__main__':
  main()