This file is indexed.

/usr/lib/R/site-library/Biostrings/doc/PairwiseAlignments.Rnw is in r-bioc-biostrings 2.38.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
%\VignetteIndexEntry{Pairwise Sequence Alignments}
%\VignetteKeywords{DNA, RNA, Sequence, Biostrings, Sequence alignment} 
%\VignettePackage{Biostrings}

%
% NOTE -- ONLY EDIT THE .Rnw FILE!!!  The .tex file is
% likely to be overwritten.
%
\documentclass[10pt]{article}

\usepackage{times}
\usepackage{hyperref}

\textwidth=6.5in
\textheight=8.5in
%\parskip=.3cm
\oddsidemargin=-.1in
\evensidemargin=-.1in
\headheight=-.3in

\newcommand{\scscst}{\scriptscriptstyle}
\newcommand{\scst}{\scriptstyle}

\newcommand{\R}{{\textsf{R}}}
\newcommand{\code}[1]{{\texttt{#1}}}
\newcommand{\term}[1]{{\emph{#1}}}
\newcommand{\Rpackage}[1]{\textsf{#1}}
\newcommand{\Rfunction}[1]{\texttt{#1}}
\newcommand{\Robject}[1]{\texttt{#1}}
\newcommand{\Rclass}[1]{{\textit{#1}}}
\newcommand{\Rmethod}[1]{{\textit{#1}}}
\newcommand{\Rfunarg}[1]{{\textit{#1}}}

\bibliographystyle{plainnat} 
 
\begin{document}
%\setkeys{Gin}{width=0.55\textwidth}

\title{Pairwise Sequence Alignments}
\author{Patrick Aboyoun \\
  Gentleman Lab \\
  Fred Hutchinson Cancer Research Center \\
  Seattle, WA}
\date{\today}
\maketitle

\tableofcontents

\section{Introduction}

In this document we illustrate how to perform pairwise sequence alignments
using the \Rpackage{Biostrings} package through the use of the
\Rfunction{pairwiseAlignment} function. This function aligns a set of
\Rfunarg{pattern} strings to a \Rfunarg{subject} string in a global, local, or
overlap (ends-free) fashion with or without affine gaps using either a fixed
or quality-based substitution scoring scheme. This function's computation time
is proportional to the product of the two string lengths being aligned.


\section{Pairwise Sequence Alignment Problems}

The (Needleman-Wunsch) global, the (Smith-Waterman) local, and (ends-free)
overlap pairwise sequence alignment problems are described as follows. Let
string $S_i$ have $n_i$ characters $c_{(i,j)}$ with
$j \in \left\{1, \ldots, n_i\right\}$. A pairwise sequence alignment is a
mapping of strings $S_1$ and $S_2$ to gapped substrings ${S'}_1$ and ${S'}_2$
that are defined by

\begin{eqnarray*}
{S'}_1 & = & g_{\left(1,a_1\right)}c_{\left(1,a_1\right)} \cdots g_{\left(1,b_1\right)}c_{\left(1,b_1\right)}g_{\left(1,b_1+1\right)}\\
{S'}_2 & = & g_{\left(2,a_2\right)}c_{\left(2,a_2\right)} \cdots g_{\left(2,b_2\right)}c_{\left(2,b_2\right)}g_{\left(2,b_2+1\right)}
\end{eqnarray*}
\begin{tabbing}
  where \= \\
  \> $a_i, b_i \in \{1, \ldots, n_i\}$ with $a_i \leq b_i$ \\
  \> $g_{(i,j)} = 0$ or more gaps at the specified position $j$ for aligned string $i$ \\
  \> $length({S'}_1) = length({S'}_2)$
\end{tabbing}

Each of these pairwise sequence alignment problems is solved by maximizing the
alignment \textit{score}. An alignment score is determined by the type of
pairwise sequence alignment (global, local, overlap), which sets the
$[a_i, b_i]$ ranges for the substrings; the substitution scoring scheme, which
sets the distance between aligned characters; and the gap penalties, which is
divided into opening and extension components. The optimal pairwise sequence
alignment is the pairwise sequence alignment with the largest score for the
specified alignment type, substitution scoring scheme, and gap penalties.
The pairwise sequence alignment types, substitution scoring schemes, and gap
penalties influence alignment scores in the following manner:

\begin{description}
  \item{Pairwise Sequence Alignment Types:  }
  The type of pairwise sequence alignment determines the substring ranges to
  apply the substitution scoring and gap penalty schemes. For the three primary
  (global, local, overlap) and two derivative (subject overlap, pattern overlap)
  pairwise sequence alignment types, the resulting substring ranges are as
  follows:
  \begin{description}
    \item{Global - } $[a_1, b_1] = [1, n_1]$ and $[a_2, b_2] = [1, n_2]$
    \item{Local - } $[a_1, b_1]$ and $[a_2, b_2]$
    \item{Overlap - }
      $\left\{[a_1, b_1] = [a_1, n_1], [a_2, b_2] = [1, b_2]\right\}$ or
      $\left\{[a_1, b_1] = [1, b_1], [a_2, b_2] = [a_2, n_2]\right\}$
    \item{Subject Overlap - } $[a_1, b_1] = [1, n_1]$ and $[a_2, b_2]$
    \item{Pattern Overlap - } $[a_1, b_1]$ and $[a_2, b_2] = [1, n_2]$
  \end{description}
  \item{Substitution Scoring Schemes:  }
  The substitution scoring scheme sets the values for the aligned character
  pairings within the substring ranges determined by the type of pairwise
  sequence alignment. This scoring scheme can be fixed for character
  pairings or quality-dependent for character pairings. (Characters that align
  with a gap are penalized according to the ``Gap Penalty'' framework.)
  \begin{description}
    \item{Fixed substitution scoring - }
    Fixed substitution scoring schemes associate each aligned character
    pairing with a value. These schemes are very common and include awarding
    one value for a match and another for a mismatch, Point Accepted Mutation
    (PAM) matrices, and Block Substitution Matrix (BLOSUM) matrices.
    \item{Quality-based substitution scoring - }
    Quality-based substitution scoring schemes derive the value for the aligned
    character pairing based on the probabilities of character recording errors
    \cite{Malde:2008}.
    Let $\epsilon_i$ be the probability of a character recording error.
    Assuming independence within and between recordings and a uniform
    background frequency of the different characters, the combined error
    probability of a mismatch when the underlying characters do match is
    $\epsilon_c = \epsilon_1 + \epsilon_2 - (n/(n-1)) * \epsilon_1 * \epsilon_2$,
    where $n$ is the number of characters in the underlying alphabet (e.g. in
    DNA and RNA, $n = 4$). Using $\epsilon_c$, the substitution score is given by
    $b * \log_2(\gamma_{(x,y)} * (1 - \epsilon_c) * n + (1 - \gamma_{(x,y)}) * \epsilon_c * (n/(n-1)))$,
    where $b$ is the bit-scaling for the scoring and $\gamma_{(x,y)}$ is the
    probability that characters $x$ and $y$ represents the same underlying
    letters (e.g. using IUPAC, $\gamma_{(A,A)} = 1$ and $\gamma_{(A,N)} = 1/4$).
  \end{description}  
  \item{Gap Penalties:  }
  Gap penalties are the values associated with the gaps within the substring
  ranges determined by the type of pairwise sequence alignment. These penalties
  are divided into \textit{gap opening} and \textit{gap extension} components,
  where the gap opening penalty is the cost for adding a new gap and the gap
  extension penalty is the incremental cost incurred along the length of the
  gap. A \textit{constant gap penalty} occurs when there is a cost associated
  with opening a gap, but no cost for the length of a gap (i.e. gap extension
  is zero). A \textit{linear gap penalty} occurs when there is no cost
  associated for opening a gap (i.e. gap opening is zero), but there is a cost
  for the length of the gap. An \textit{affine gap penalty} occurs when both
  the gap opening and gap extension have a non-zero associated cost.
\end{description}


\section{Main Pairwise Sequence Alignment Function}

The \Rfunction{pairwiseAlignment} function solves the pairwise sequence
alignment problems mentioned above. It aligns one or more strings specified in
the \Rfunarg{pattern} argument with a single string specified in the
\Rfunarg{subject} argument.

<<options,echo=FALSE>>=
options(width=72)
@ 

<<main1>>=
library(Biostrings)
pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede")
@

The type of pairwise sequence alignment is set by specifying the \Rfunarg{type}
argument to be one of \texttt{"global"}, \texttt{"local"}, \texttt{"overlap"},
\texttt{"global-local"}, and \texttt{"local-global"}.

<<main2>>=
pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede",
                  type = "local")
@

The gap penalties are regulated by the \Rfunarg{gapOpening} and
\Rfunarg{gapExtension} arguments.

<<main3>>=
pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede",
                  gapOpening = 0, gapExtension = 1)
@

The substitution scoring scheme is set using three arguments, two of which are
quality-based related (\Rfunarg{patternQuality}, \Rfunarg{subjectQuality}) and
one is fixed substitution related (\Rfunarg{substitutionMatrix}). When the
substitution scores are fixed by character pairing, the
\Rfunarg{substituionMatrix} argument takes a matrix with the appropriate
alphabets as dimension names. The \Rfunction{nucleotideSubstitutionMatrix}
function tranlates simple match and mismatch scores to the full spectrum of
IUPAC nucleotide codes.

<<main4>>=
submat <-
  matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
diag(submat) <- 0
pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede",
                  substitutionMatrix = submat,
                  gapOpening = 0, gapExtension = 1)
@

When the substitution scores are quality-based, the
\Rfunarg{patternQuality} and \Rfunarg{subjectQuality} arguments
represent the equivalent of $[x-99]$ numeric quality values for the
respective strings, and the optional \Rfunarg{fuzzyMatrix} argument
represents how the closely two characters match on a $[0,1]$
scale. The \Rfunarg{patternQuality} and \Rfunarg{subjectQuality}
arguments accept quality measures in either a \Rclass{PhredQuality},
\Rclass{SolexaQuality}, or \Rclass{IlluminaQuality} scaling. For
\Rclass{PhredQuality} and \Rclass{IlluminaQuality} measures $Q \in [0,
  99]$, the probability of an error in the base read is given by
$10^{-Q/10}$ and for \Rclass{SolexaQuality} measures $Q \in [-5, 99]$,
they are given by $1 - 1/(1 + 10^{-Q/10})$. The
\Rfunction{qualitySubstitutionMatrices} function maps the
\Rfunarg{patternQuality} and \Rfunarg{subjectQuality} scores to match
and mismatch penalties. These three arguments will be demonstrated in
later sections.

The final argument, \Rfunarg{scoreOnly}, to the \Rfunction{pairwiseAlignment}
function accepts a logical value to specify whether or not to return just the
pairwise sequence alignment score. If \Rfunarg{scoreOnly} is \Robject{FALSE},
the pairwise alignment with the maximum alignment score is returned. If more
than one pairwise alignment has the maximum alignment score exists, the first
alignment along the subject is returned. If there are multiple pairwise
alignments with the maximum alignment score at the chosen subject location,
then at each location along the alignment mismatches are given preference to
insertions/deletions. For example, \code{pattern: [1] ATTA; subject: [1] AT-A}
is chosen above \code{pattern: [1] ATTA; subject: [1] A-TA} if they both have
the maximum alignment score.

<<main5>>=
submat <-
  matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
diag(submat) <- 0
pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede",
                  substitutionMatrix = submat,
                  gapOpening = 0, gapExtension = 1, scoreOnly = TRUE)
@

\subsection{Exercise 1}
\begin{enumerate}
\item Using \Rfunction{pairwiseAlignment}, fit the global, local, and overlap
pairwise sequence alignment of the strings \Robject{"syzygy"} and
\Robject{"zyzzyx"} using the default settings.
\item Do any of the alignments change if the \Rfunarg{gapExtension} argument
is set to \Robject{-Inf}?
\end{enumerate}

[Answers provided in section \ref{sec:Answers1}.]


\section{Pairwise Sequence Alignment Classes}

Following the design principles of Bioconductor and R, the pairwise sequence
alignment functionality in the \Rpackage{Biostrings} package keeps the end-user
close to their data through the use of five specialty classes:  
\Rclass{PairwiseAlignments}, \Rclass{PairwiseAlignmentsSingleSubject},
\Rclass{PairwiseAlignmentsSingleSubjectSummary}, \Rclass{AlignedXStringSet}, and
\Rclass{QualityAlignedXStringSet}. The \Rclass{PairwiseAlignmentsSingleSubject}
class inherits from the \Rclass{PairwiseAlignments} class and they both
hold the results of a fit from the \Rfunction{pairwiseAlignment} function, with
the former class being used to represent all patterns aligning to a single
subject and the latter being used to represent elementwise alignments between a
set of patterns and a set of subjects.

<<classes1>>=
psa1 <- pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede")
class(psa1)
@

and the \Rfunction{pairwiseAlignmentSummary} function holds the results of a
summarized pairwise sequence alignment.

<<classes2>>=
summary(psa1)
class(summary(psa1))
@

The \Rclass{AlignedXStringSet} and \Rclass{QualityAlignedXStringSet} classes
hold the ``gapped'' ${S'}_i$ substrings with the former class holding the
results when the pairwise sequence alignment is performed with a fixed
substitution scoring scheme and the latter class a quality-based scoring
scheme.

<<classes3>>=
class(pattern(psa1))
submat <-
  matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
diag(submat) <- 0
psa2 <-
  pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede",
                    substitutionMatrix = submat,
                    gapOpening = 0, gapExtension = 1)
class(pattern(psa2))
@

\subsection{Exercise 2}
\begin{enumerate}
\item What is the primary benefit of formal summary classes like
\Rclass{PairwiseAlignmentsSingleSubjectSummary} and \Rclass{summary.lm} to end-users? 
\end{enumerate}

[Answer provided in section \ref{sec:Answers2}.]


\section{Pairwise Sequence Alignment Helper Functions}

Tables \ref{table:helperfuns1}, \ref{table:helperfuns1} and
\ref{table:alignfuns} show functions that interact with objects of class
\Rclass{PairwiseAlignments}, \Rclass{PairwiseAlignmentsSingleSubject}, and
\Rclass{AlignedXStringSet}. These functions should be used in preference to
direct slot extraction from the alignment objects.

\begin{table}[ht]
\begin{center}
\begin{tabular}{l|l}
\hline
Function                    & Description \\
\hline
\Rfunction{[}               & Extracts the specified elements of the alignment object \\
\Rfunction{alphabet}        & Extracts the allowable characters in the original strings \\
\Rfunction{compareStrings}  & Creates character string mashups of the alignments \\
\Rfunction{deletion}        & Extracts the locations of the gaps inserted into the pattern for the alignments \\
\Rfunction{length}          & Extracts the number of patterns aligned \\
\Rfunction{mismatchTable}   & Creates a table for the mismatching positions \\
\Rfunction{nchar}           & Computes the length of ``gapped'' substrings \\
\Rfunction{nedit}           & Computes the Levenshtein edit distance of the alignments \\
\Rfunction{indel}           & Extracts the locations of the insertion \& deletion gaps in the alignments \\
\Rfunction{insertion}       & Extracts the locations of the gaps inserted into the subject for the alignments \\
\Rfunction{nindel}          & Computes the number of insertions \& deletions in the alignments \\
\Rfunction{nmatch}          & Computes the number of matching characters in the alignments \\
\Rfunction{nmismatch}       & Computes the number of mismatching characters in the alignments \\
\Rfunction{pattern}, \Rfunction{subject} & Extracts the aligned pattern/subject \\
\Rfunction{pid}             & Computes the percent sequence identity \\
\Rfunction{rep}             & Replicates the elements of the alignment object \\
\Rfunction{score}           & Extracts the pairwise sequence alignment scores \\
\Rfunction{type}            & Extracts the type of pairwise sequence alignment \\
\hline
\end{tabular}
\end{center}
\caption{Functions for \Rclass{PairwiseAlignments} and \Rclass{PairwiseAlignmentsSingleSubject}
  objects.}
\label{table:helperfuns1}
\end{table}

\begin{table}[ht]
\begin{center}
\begin{tabular}{l|l}
\hline
Function                    & Description \\
\hline
\Rfunction{aligned}         & Creates an \Rclass{XStringSet} containing either ``filled-with-gaps'' or
                              degapped aligned strings \\
\Rfunction{as.character}    & Creates a character vector version of \Rfunction{aligned} \\
\Rfunction{as.matrix}       & Creates an ``exploded" character matrix version of \Rfunction{aligned} \\
\Rfunction{consensusMatrix} & Computes a consensus matrix for the alignments \\
\Rfunction{consensusString} & Creates the string based on a 50\% + 1 vote from the consensus matrix \\
\Rfunction{coverage}        & Computes the alignment coverage along the subject \\
\Rfunction{mismatchSummary} & Summarizes the information of the \Rfunction{mismatchTable} \\
\Rfunction{summary}         & Summarizes a pairwise sequence alignment \\
\Rfunction{toString}        & Creates a concatenated string version of \Rfunction{aligned} \\
\Rfunction{Views}           & Creates an \Rclass{XStringViews} representing the aligned region along the subject \\
\hline
\end{tabular}
\end{center}
\caption{Additional functions for \Rclass{PairwiseAlignmentsSingleSubject} objects.}
\label{table:helperfuns2}
\end{table}

The \Rfunction{score}, \Rfunction{nedit}, \Rfunction{nmatch},
\Rfunction{nmismatch}, and \Rfunction{nchar} functions return numeric vectors
containing information on the pairwise sequence alignment score, number of
matches, number of mismatches, and number of aligned characters respectively.

<<helper1>>=
submat <-
  matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
diag(submat) <- 0
psa2 <-
  pairwiseAlignment(pattern = c("succeed", "precede"), subject = "supersede",
                    substitutionMatrix = submat,
                    gapOpening = 0, gapExtension = 1)
score(psa2)
nedit(psa2)
nmatch(psa2)
nmismatch(psa2)
nchar(psa2)
aligned(psa2)
as.character(psa2)
as.matrix(psa2)
consensusMatrix(psa2)
@

The \Rfunction{summary}, \Rfunction{mismatchTable}, and
\Rfunction{mismatchSummary} functions return various summaries of the pairwise
sequence alignments.

<<helper2>>=
summary(psa2)
mismatchTable(psa2)
mismatchSummary(psa2)
@

\begin{table}[ht]
\begin{center}
\begin{tabular}{l|l}
\hline
Function                    & Description \\
\hline
\Rfunction{[}               & Extracts the specified elements of the alignment object \\
\Rfunction{aligned}, \Rfunction{unaligned} & Extracts the aligned/unaligned strings \\
\Rfunction{alphabet}        & Extracts the allowable characters in the original strings \\
\Rfunction{as.character}, \Rfunction{toString} & Converts the alignments to character strings \\
\Rfunction{coverage}        & Computes the alignment coverage \\
\Rfunction{end}             & Extracts the ending index of the aligned range \\
\Rfunction{indel}           & Extracts the insertion/deletion locations \\
\Rfunction{length}          & Extracts the number of patterns aligned \\
\Rfunction{mismatch}        & Extracts the position of the mismatches \\
\Rfunction{mismatchSummary} & Summarizes the information of the \Rfunction{mismatchTable} \\
\Rfunction{mismatchTable}   & Creates a table for the mismatching positions \\
\Rfunction{nchar}           & Computes the length of ``gapped'' substrings \\
\Rfunction{nindel}          & Computes the number of insertions/deletions in the alignments \\
\Rfunction{nmismatch}       & Computes the number of mismatching characters in the alignments \\
\Rfunction{rep}             & Replicates the elements of the alignment object \\
\Rfunction{start}           & Extracts the starting index of the aligned range \\
\Rfunction{toString}        & Creates a concatenated string containing the alignments \\
\Rfunction{width}           & Extracts the width of the aligned range \\
\hline
\end{tabular}
\end{center}
\caption{Functions for \Rclass{AlignedXString} and \Rclass{QualityAlignedXString} objects.}
\label{table:alignfuns}
\end{table}

The \Rfunction{pattern} and \Rfunction{subject} functions extract the aligned
pattern and subject objects for further analysis. Most of the actions that can
be performed on \Rclass{PairwiseAlignments} objects can also be performed
on \Rclass{AlignedXStringSet} and \Rclass{QualityAlignedXStringSet} objects as
well as operations including \Rfunction{start}, \Rfunction{end}, and
\Rfunction{width} that extracts the start, end, and width of the alignment
ranges.

<<helper3>>=
class(pattern(psa2))
aligned(pattern(psa2))
nindel(pattern(psa2))
start(subject(psa2))
end(subject(psa2))
@

\subsection{Exercise 3}
For the overlap pairwise sequence alignment of the strings \Robject{"syzygy"}
and \Robject{"zyzzyx"} with the \Rfunction{pairwiseAlignment} default settings,
perform the following operations:
\begin{enumerate}
\item Use \Rfunction{nmatch} and \Rfunction{nmismath} to extract the number
of matches and mismatches respectively.
\item Use the \Rfunction{compareStrings} function to get the symbolic
representation of the alignment.
\item Use the \Rfunction{as.character} function to the get the character string
versions of the alignments.
\item Use the \Rfunction{pattern} function to extract the aligned pattern and
apply the \Rfunction{mismatch} function to it to find the locations of the
mismatches.
\item Use the \Rfunction{subject} function to extract the aligned subject and
apply the \Rfunction{aligned} function to it to get the aligned strings.
\end{enumerate}

[Answers provided in section \ref{sec:Answers3}.]


\section{Edit Distances}

One of the earliest uses of pairwise sequence alignment is in the area of text
analysis. In 1965 Vladimir Levenshtein considered a metric, now called the 
\textit{Levenshtein edit distance}, that measures the similarity between two
strings. This distance metric is equivalent to the negative of the score of a
pairwise sequence alignment with a match cost of 0, a mismatch cost of -1, a
gap opening penalty of 0, and a gap extension penalty of 1.

The \Rfunction{stringDist} uses the internals of the
\Rfunction{pairwiseAlignment} function to calculate the Levenshtein edit
distance matrix for a set of strings. 

There is also an implementation of approximate string matching using
Levenshtein edit distance in the \Rfunction{agrep} (approximate grep) function
of the \Rpackage{base} R package. As the following example shows, it is
possible to replicate the \Rfunction{agrep} function using the
\Rfunction{pairwiseAlignment} function. Since the \Rfunction{agrep} function is
vectorized in \Rfunarg{x} rather than \Rfunarg{pattern}, these arguments are
flipped in the call to \Rfunction{pairwiseAlignment}.

<<editdist1>>=
agrepBioC <-
function(pattern, x, ignore.case = FALSE, value = FALSE, max.distance = 0.1)
{
  if (!is.character(pattern)) pattern <- as.character(pattern)
  if (!is.character(x)) x <- as.character(x)
  if (max.distance < 1)
    max.distance <- ceiling(max.distance / nchar(pattern))
  characters <- unique(unlist(strsplit(c(pattern, x), "", fixed = TRUE)))
  if (ignore.case)
    substitutionMatrix <-
      outer(tolower(characters), tolower(characters), function(x,y) -as.numeric(x!=y))
  else
    substitutionMatrix <-
      outer(characters, characters, function(x,y) -as.numeric(x!=y))
  dimnames(substitutionMatrix) <- list(characters, characters)
  distance <-
    - pairwiseAlignment(pattern = x, subject = pattern,
                        substitutionMatrix = substitutionMatrix,
                        type = "local-global",
                        gapOpening = 0, gapExtension = 1,
                        scoreOnly = TRUE)
  whichClose <- which(distance <= max.distance)
  if (value)
    whichClose <- x[whichClose]
  whichClose
}
cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE),
      bioc = agrepBioC("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE))
cbind(base = agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE),
      bioc = agrepBioC("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE))
@

\subsection{Exercise 4}
\begin{enumerate}
\item Use the \Rfunction{pairwiseAlignment} function to find the
Levenshtein edit distance between \Robject{"syzygy"} and \Robject{"zyzzyx"}.
\item Use the \Rfunction{stringDist} function to find the Levenshtein edit
distance for the vector
\Robject{c("zyzzyx", "syzygy", "succeed", "precede", "supersede")}.
\end{enumerate}

[Answers provided in section \ref{sec:Answers4}.]


\section{Application:  Using Evolutionary Models in Protein Alignments}

When proteins are believed to descend from a common ancestor, evolutionary
models can be used as a guide in pairwise sequence alignments. The two most
common families evolutionary models of proteins used in pairwise sequence
alignments are Point Accepted Mutation (PAM) matrices, which are based on
explicit evolutionary models, and Block Substitution Matrix (BLOSUM) matrices,
which are based on data-derived evolution models. The \Rpackage{Biostrings}
package contains 5 PAM and 5 BLOSUM matrices (\Robject{PAM30} \Robject{PAM40},
\Robject{PAM70}, \Robject{PAM120}, \Robject{PAM250}, \Robject{BLOSUM45},
\Robject{BLOSUM50}, \Robject{BLOSUM62}, \Robject{BLOSUM80}, and
\Robject{BLOSUM100}) that can be used in the \Rfunarg{substitutionMatrix}
argument to the \Rfunction{pairwiseAlignment} function.

Here is an example pairwise sequence alignment of amino acids from Durbin, Eddy
et al being fit by the \Rfunction{pairwiseAlignment} function using the
\Robject{BLOSUM50} matrix:

<<lkblo>>=
data(BLOSUM50)
BLOSUM50[1:4,1:4]
nwdemo <- 
  pairwiseAlignment(AAString("PAWHEAE"), AAString("HEAGAWGHEE"), substitutionMatrix = BLOSUM50,
                    gapOpening = 0, gapExtension = 8)
nwdemo
compareStrings(nwdemo)
pid(nwdemo)
@

\subsection{Exercise 5}
\begin{enumerate}
\item Repeat the alignment exercise above using \Robject{BLOSUM62}, a gap
opening penalty of 12, and a gap extension penalty of 4.
\item Explore to find out what caused the alignment to change.
\end{enumerate}

[Answers provided in section \ref{sec:Answers5}.]


\section{Application:  Removing Adapters from Sequence Reads}

Finding and removing uninteresting experiment process-related fragments like
adapters is a common problem in genetic sequencing, and pairwise sequence
alignment is well-suited to address this issue. When adapters are used to
anchor or extend a sequence during the experiment process, they either
intentionally or unintentionally become sequenced during the read process.
The following code simulates what sequences with adapter fragments at either
end could look like during an experiment.

<<adapter1>>=
simulateReads <-
function(N, adapter, experiment, substitutionRate = 0.01, gapRate = 0.001) {
  chars <- strsplit(as.character(adapter), "")[[1]]
  sapply(seq_len(N), function(i, experiment, substitutionRate, gapRate) {
    width <- experiment[["width"]][i]
    side <- experiment[["side"]][i]
    randomLetters <-
      function(n) sample(DNA_ALPHABET[1:4], n, replace = TRUE) 
    randomLettersWithEmpty <-
      function(n)
      sample(c("", DNA_ALPHABET[1:4]), n, replace = TRUE,
             prob = c(1 - gapRate, rep(gapRate/4, 4)))
    nChars <- length(chars)
    value <-
      paste(ifelse(rbinom(nChars,1,substitutionRate), randomLetters(nChars), chars),
            randomLettersWithEmpty(nChars),
            sep = "", collapse = "")
    if (side)
      value <-
        paste(c(randomLetters(36 - width), substring(value, 1, width)),
                sep = "", collapse = "")
    else
      value <-
        paste(c(substring(value, 37 - width, 36), randomLetters(36 - width)),
                sep = "", collapse = "")
    value
  }, experiment = experiment, substitutionRate = substitutionRate, gapRate = gapRate)
}

adapter <- DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA")
set.seed(123)
N <- 1000
experiment <-
  list(side = rbinom(N, 1, 0.5), width = sample(0:36, N, replace = TRUE))
table(experiment[["side"]], experiment[["width"]])
adapterStrings <-
  simulateReads(N, adapter, experiment, substitutionRate = 0.01, gapRate = 0.001)
adapterStrings <- DNAStringSet(adapterStrings)
@

These simulated strings above have 0 to 36 characters from the adapters
attached to either end. We can use completely random strings as a baseline for
any pairwise sequence alignment methodology we develop to remove the adapter
characters.

<<adapter2>>=
M <- 5000
randomStrings <-
  apply(matrix(sample(DNA_ALPHABET[1:4], 36 * M, replace = TRUE),
               nrow = M), 1, paste, collapse = "")
randomStrings <- DNAStringSet(randomStrings)
@

Since edit distances are easy to explain, it serves as a good place to start
for developing a adapter removal methodology. Unfortunately given that it is
based on a global alignment, it only is useful for filtering out sequences that
are derived primarily from the adapter.

<<adapter3>>=
## Method 1:  Use edit distance with an FDR of 1e-03
submat1 <- nucleotideSubstitutionMatrix(match = 0, mismatch = -1, baseOnly = TRUE)
randomScores1 <-
  pairwiseAlignment(randomStrings, adapter, substitutionMatrix = submat1,
                    gapOpening = 0, gapExtension = 1, scoreOnly = TRUE)
quantile(randomScores1, seq(0.99, 1, by = 0.001))
adapterAligns1 <-
  pairwiseAlignment(adapterStrings, adapter, substitutionMatrix = submat1,
                    gapOpening = 0, gapExtension = 1)
table(score(adapterAligns1) > quantile(randomScores1, 0.999), experiment[["width"]])
@

One improvement to removing adapters is to look at consecutive matches anywhere
within the sequence. This is more versatile than the edit distance method, but
it requires a relatively large number of consecutive matches and is susceptible
to issues related to error related substitutions and insertions/deletions.

<<adapter4>>=
## Method 2:  Use consecutive matches anywhere in string with an FDR of 1e-03
submat2 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
randomScores2 <-
  pairwiseAlignment(randomStrings, adapter, substitutionMatrix = submat2,
                    type = "local", gapOpening = 0, gapExtension = Inf,
                    scoreOnly = TRUE)
quantile(randomScores2, seq(0.99, 1, by = 0.001))
adapterAligns2 <-
  pairwiseAlignment(adapterStrings, adapter, substitutionMatrix = submat2,
                    type = "local", gapOpening = 0, gapExtension = Inf)
table(score(adapterAligns2) > quantile(randomScores2, 0.999), experiment[["width"]])
# Determine if the correct end was chosen
table(start(pattern(adapterAligns2)) > 37 - end(pattern(adapterAligns2)),
      experiment[["side"]])
@

Limiting consecutive matches to the ends provides better results, but it
doesn't resolve the issues related to substitutions and insertions/deletions
errors.

<<adapter5>>=
## Method 3:  Use consecutive matches on the ends with an FDR of 1e-03
submat3 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
randomScores3 <-
  pairwiseAlignment(randomStrings, adapter, substitutionMatrix = submat3,
                    type = "overlap", gapOpening = 0, gapExtension = Inf,
                    scoreOnly = TRUE)
quantile(randomScores3, seq(0.99, 1, by = 0.001))
adapterAligns3 <-
  pairwiseAlignment(adapterStrings, adapter, substitutionMatrix = submat3,
                    type = "overlap", gapOpening = 0, gapExtension = Inf)
table(score(adapterAligns3) > quantile(randomScores3, 0.999), experiment[["width"]])
# Determine if the correct end was chosen
table(end(pattern(adapterAligns3)) == 36, experiment[["side"]])
@

Allowing for substitutions and insertions/deletions errors in the pairwise
sequence alignments provides much better results for finding adapter fragments.

<<adapter6>>=
## Method 4:  Allow mismatches and indels on the ends with an FDR of 1e-03
randomScores4 <-
  pairwiseAlignment(randomStrings, adapter, type = "overlap", scoreOnly = TRUE)
quantile(randomScores4, seq(0.99, 1, by = 0.001))
adapterAligns4 <-
  pairwiseAlignment(adapterStrings, adapter, type = "overlap")
table(score(adapterAligns4) > quantile(randomScores4, 0.999), experiment[["width"]])
# Determine if the correct end was chosen
table(end(pattern(adapterAligns4)) == 36, experiment[["side"]])
@

Using the results that allow for substitutions and insertions/deletions errors,
the cleaned sequence fragments can be generated as follows:

<<adapter7>>=
## Method 4 continued:  Remove adapter fragments
fragmentFound <-
  score(adapterAligns4) > quantile(randomScores4, 0.999)
fragmentFoundAt1 <-
  fragmentFound & (start(pattern(adapterAligns4)) == 1)
fragmentFoundAt36 <-
  fragmentFound & (end(pattern(adapterAligns4)) == 36)
cleanedStrings <- as.character(adapterStrings)
cleanedStrings[fragmentFoundAt1] <-
  as.character(narrow(adapterStrings[fragmentFoundAt1], end = 36,
         width = 36 - end(pattern(adapterAligns4[fragmentFoundAt1]))))
cleanedStrings[fragmentFoundAt36] <-
  as.character(narrow(adapterStrings[fragmentFoundAt36], start = 1,
         width = start(pattern(adapterAligns4[fragmentFoundAt36])) - 1))
cleanedStrings <- DNAStringSet(cleanedStrings)
cleanedStrings
@

\subsection{Exercise 6}
\begin{enumerate}
\item Rerun the simulation time using the \Rfunction{simulateReads} function
with a \Rfunarg{substitutionRate} of 0.005 and \Rfunarg{gapRate} of 0.0005.
How do the different pairwise sequence alignment methods compare?
\item (Advanced) Modify the \Rfunction{simulateReads} function to accept
different equal length adapters on either side (left \& right) of the reads.
How would the methods for trimming the reads change?
\end{enumerate}

[Answers provided in section \ref{sec:Answers6}.]


\section{Application:  Quality Assurance in Sequencing Experiments}

Due to its flexibility, the \Rfunction{pairwiseAlignment} function is able to
diagnose sequence matching-related issues that arise when
\Rfunction{matchPDict} and its related functions don't find a match. This
section contains an example involving a short read Solexa sequencing experiment
of bacteriophage $\phi$ X174 DNA produced by New England BioLabs (NEB). This
experiment contains slightly less than 5000 unique short reads in
\Robject{srPhiX174}, with quality measures in \Robject{quPhiX174}, and frequency
for those short reads in \Robject{wtPhiX174}.

In order to demonstrate how to find sequence differences in the target, these
short reads will be compared against the bacteriophage $\phi$ X174 genome
NC\_001422 from the GenBank database.

<<genome1>>=
data(phiX174Phage)
genBankPhage <- phiX174Phage[[1]]
nchar(genBankPhage)

data(srPhiX174)
srPhiX174
quPhiX174
summary(wtPhiX174)

fullShortReads <- rep(srPhiX174, wtPhiX174)
srPDict <- PDict(fullShortReads)
table(countPDict(srPDict, genBankPhage))
@

For these short reads, the \Rfunction{pairwiseAlignment} function finds that
the small number of perfect matches is due to two locations on the bacteriophage
$\phi$X174 genome.

Unlike the \Rfunction{countPDict} function, the \Rfunction{pairwiseAlignment}
function works off of the original strings, rather than \Rfunction{PDict}
processed strings, and to be computationally efficient it is recommended that
the unique sequences are supplied to the \Rfunction{pairwiseAlignment}
function, and the frequencies of those sequences are supplied to the
\Rfunarg{weight} argument of functions like \Rfunction{summary},
\Rfunction{mismatchSummary}, and \Rfunction{coverage}. For the purposes of this
exercise, a substring of the GenBank bacteriophage $\phi$ X174 genome is
supplied to the \Rfunarg{subject} argument of the \Rfunction{pairwiseAlignment}
function to reduce the computation time.

<<genome2>>=
genBankSubstring <- substring(genBankPhage, 2793-34, 2811+34)

genBankAlign <-
  pairwiseAlignment(srPhiX174, genBankSubstring,
                    patternQuality = SolexaQuality(quPhiX174),
                    subjectQuality = SolexaQuality(99L),
                    type = "global-local")
summary(genBankAlign, weight = wtPhiX174)

revisedPhage <-
  replaceLetterAt(genBankPhage, c(2793, 2811), "TT")
table(countPDict(srPDict, revisedPhage))
@

The following plot shows the coverage of the aligned short reads along the
substring of the bacteriophage $\phi$ X174 genome. Applying the
\Rfunction{slice} function to the coverage shows the entire substring is
covered by aligned short reads.

<<genome3, fig=TRUE>>=
genBankCoverage <- coverage(genBankAlign, weight = wtPhiX174)
plot((2793-34):(2811+34), as.integer(genBankCoverage), xlab = "Position", ylab = "Coverage",
     type = "l")
nchar(genBankSubstring)
slice(genBankCoverage, lower = 1)
@

\subsection{Exercise 7}
\begin{enumerate}
\item Rerun the global-local alignment of the short reads against the entire
genome. (This may take a few minutes.)
\item Plot the coverage of these alignments and use the \Rfunction{slice}
function to find the ranges of alignment. Are there any alignments outside of
the substring region that was used above?
\item Use the \Rfunction{reverseComplement} function on the bacteriophage
$\phi$ X174 genome. Do any short reads have a higher alignment score on this
new sequence than on the original sequence?
\end{enumerate}

[Answers provided in section \ref{sec:Answers7}.]


\section{Computation Profiling}
The \Rfunction{pairwiseAlignment} function uses a dynamic programming algorithm
based on the Needleman-Wunsch and Smith-Waterman algorithms for global and
local pairwise sequence alignments respectively. The algorithm consumes memory
and computation time proportional to the product of the length of the two
strings being aligned.

<<profiling1, fig=TRUE>>=
N <- as.integer(seq(500, 5000, by = 500))
timings <- rep(0, length(N))
names(timings) <- as.character(N)
for (i in seq_len(length(N))) {
  string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
  string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
  timings[i] <- system.time(pairwiseAlignment(string1, string2, type = "global"))[["user.self"]]
}
timings
coef(summary(lm(timings ~ poly(N, 2))))
plot(N, timings, xlab = "String Size, Both Strings", ylab = "Timing (sec.)", type = "l",
     main = "Global Pairwise Sequence Alignment Timings")
@

When a problem only requires the pairwise sequence alignment score, setting the
\Rfunarg{scoreOnly} argument to \Robject{TRUE} will more than halve the
computation time.

<<profiling2>>=
scoreOnlyTimings <- rep(0, length(N))
names(scoreOnlyTimings) <- as.character(N)
for (i in seq_len(length(N))) {
  string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
  string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
  scoreOnlyTimings[i] <- system.time(pairwiseAlignment(string1, string2, type = "global", scoreOnly = TRUE))[["user.self"]]
}
scoreOnlyTimings
round((timings - scoreOnlyTimings) / timings, 2)
@

\subsection{Exercise 8}
\begin{enumerate}
\item Rerun the first set of profiling code, but this time fix the number of
characters in \Robject{string1} to 35 and have the number of characters in
\Robject{string2} range from 5000, 50000, by increments of 5000. What is the
computational order of this simulation exercise?
\item Rerun the second set of profiling code using the simulations from the
previous exercise with \Rfunarg{scoreOnly} argument set to \Robject{TRUE}. Is
is still twice as fast? 
\end{enumerate}

[Answers provided in section \ref{sec:Answers8}.]


\section{Computing alignment consensus matrices}

The \Rfunction{consensusMatrix} function is provided for computing a consensus matrix
for a set of equal-length strings assumed to be aligned. To illustrate, the
following application assumes the ORF data to be aligned for the first 10
positions (patently false):
<<doal>>=
file <- system.file("extdata", "someORF.fa", package="Biostrings")
orf <- readDNAStringSet(file)
orf
orf10 <- DNAStringSet(orf, end=10)
consensusMatrix(orf10, as.prob=TRUE, baseOnly=TRUE)
@

The information content as defined by Hertz and Stormo 1995 is computed as
follows:
<<infco>>=
informationContent <- function(Lmers) {
 zlog <- function(x) ifelse(x==0,0,log(x))
 co <- consensusMatrix(Lmers, as.prob=TRUE)
 lets <- rownames(co)
 fr <- alphabetFrequency(Lmers, collapse=TRUE)[lets]
 fr <- fr / sum(fr)
 sum(co*zlog(co/fr), na.rm=TRUE)
}
informationContent(orf10)
@


\section{Exercise Answers}

\subsection{Exercise 1}
\label{sec:Answers1}
\begin{enumerate}
\item Using \Rfunction{pairwiseAlignment}, fit the global, local, and overlap
pairwise sequence alignment of the strings \Robject{"syzygy"} and
\Robject{"zyzzyx"} using the default settings.
<<ans1a>>=
pairwiseAlignment("zyzzyx", "syzygy")
pairwiseAlignment("zyzzyx", "syzygy", type = "local")
pairwiseAlignment("zyzzyx", "syzygy", type = "overlap")
@
\item Do any of the alignments change if the \Rfunarg{gapExtension} argument
is set to \Robject{-Inf}? \textit{Yes, the overlap pairwise sequence alignment
changes.}
<<ans1b>>=
pairwiseAlignment("zyzzyx", "syzygy", type = "overlap", gapExtension = Inf)
@
\end{enumerate}

\subsection{Exercise 2}
\label{sec:Answers2}
\begin{enumerate}
\item What is the primary benefit of formal summary classes like
\Rclass{PairwiseAlignmentsSingleSubjectSummary} and \Rclass{summary.lm}
to end-users?
\textit{These classes allow the end-user to extract the summary output for
further operations.}
<<ans2a>>=
ex2 <- summary(pairwiseAlignment("zyzzyx", "syzygy"))
nmatch(ex2) / nmismatch(ex2)
@
\end{enumerate}

\subsection{Exercise 3}
\label{sec:Answers3}
For the overlap pairwise sequence alignment of the strings \Robject{"syzygy"}
and \Robject{"zyzzyx"} with the \Rfunction{pairwiseAlignment} default settings,
perform the following operations:
<<ans3>>=
ex3 <- pairwiseAlignment("zyzzyx", "syzygy", type = "overlap")
@
\begin{enumerate}
\item Use \Rfunction{nmatch} and \Rfunction{nmismath} to extract the number
of matches and mismatches respectively.
<<ans3a>>=
nmatch(ex3)
nmismatch(ex3)
@
\item Use the \Rfunction{compareStrings} function to get the symbolic
representation of the alignment.
<<ans3b>>=
compareStrings(ex3)
@
\item Use the \Rfunction{as.character} function to the get the character string
versions of the alignments.
<<ans3c>>=
as.character(ex3)
@
\item Use the \Rfunction{pattern} function to extract the aligned pattern and
apply the \Rfunction{mismatch} function to it to find the locations of the
mismatches.
<<ans3d>>=
mismatch(pattern(ex3))
@
\item Use the \Rfunction{subject} function to extract the aligned subject and
apply the \Rfunction{aligned} function to it to get the aligned strings.
<<ans3e>>=
aligned(subject(ex3))
@
\end{enumerate}

\subsection{Exercise 4}
\label{sec:Answers4}
\begin{enumerate}
\item Use the \Rfunction{pairwiseAlignment} function to find the
Levenshtein edit distance between \Robject{"syzygy"} and \Robject{"zyzzyx"}.
<<ans4a>>=
submat <- matrix(-1, nrow = 26, ncol = 26, dimnames = list(letters, letters))
diag(submat) <- 0
- pairwiseAlignment("zyzzyx", "syzygy", substitutionMatrix = submat,
                    gapOpening = 0, gapExtension = 1, scoreOnly = TRUE)
@
\item Use the \Rfunction{stringDist} function to find the Levenshtein edit
distance for the vector
\Robject{c("zyzzyx", "syzygy", "succeed", "precede", "supersede")}.
<<ans4b>>=
stringDist(c("zyzzyx", "syzygy", "succeed", "precede", "supersede"))
@
\end{enumerate}

\subsection{Exercise 5}
\label{sec:Answers5}
\begin{enumerate}
\item Repeat the alignment exercise above using \Robject{BLOSUM62}, a gap
opening penalty of 12, and a gap extension penalty of 4.
<<ans5a>>=
data(BLOSUM62)
pairwiseAlignment(AAString("PAWHEAE"), AAString("HEAGAWGHEE"), substitutionMatrix = BLOSUM62,
                  gapOpening = 12, gapExtension = 4)
@
\item Explore to find out what caused the alignment to change. \textit{The sift
in gap penalties favored infrequent long gaps to frequent short ones.}
\end{enumerate}


\subsection{Exercise 6}
\label{sec:Answers6}
\begin{enumerate}
\item Rerun the simulation time using the \Rfunction{simulateReads} function
with a \Rfunarg{substitutionRate} of 0.005 and \Rfunarg{gapRate} of 0.0005.
How do the different pairwise sequence alignment methods compare? \textit{The
different methods are much more comprobable when the error rates are lower.}
<<ans6a>>=
adapter <- DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA")
set.seed(123)
N <- 1000
experiment <-
  list(side = rbinom(N, 1, 0.5), width = sample(0:36, N, replace = TRUE))
table(experiment[["side"]], experiment[["width"]])
ex6Strings <-
  simulateReads(N, adapter, experiment, substitutionRate = 0.005, gapRate = 0.0005)
ex6Strings <- DNAStringSet(ex6Strings)
ex6Strings

## Method 1:  Use edit distance with an FDR of 1e-03
submat1 <- nucleotideSubstitutionMatrix(match = 0, mismatch = -1, baseOnly = TRUE)
quantile(randomScores1, seq(0.99, 1, by = 0.001))
ex6Aligns1 <-
  pairwiseAlignment(ex6Strings, adapter, substitutionMatrix = submat1,
                    gapOpening = 0, gapExtension = 1)
table(score(ex6Aligns1) > quantile(randomScores1, 0.999), experiment[["width"]])

## Method 2:  Use consecutive matches anywhere in string with an FDR of 1e-03
submat2 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
quantile(randomScores2, seq(0.99, 1, by = 0.001))
ex6Aligns2 <-
  pairwiseAlignment(ex6Strings, adapter, substitutionMatrix = submat2,
                    type = "local", gapOpening = 0, gapExtension = Inf)
table(score(ex6Aligns2) > quantile(randomScores2, 0.999), experiment[["width"]])
# Determine if the correct end was chosen
table(start(pattern(ex6Aligns2)) > 37 - end(pattern(ex6Aligns2)),
      experiment[["side"]])

## Method 3:  Use consecutive matches on the ends with an FDR of 1e-03
submat3 <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf, baseOnly = TRUE)
ex6Aligns3 <-
  pairwiseAlignment(ex6Strings, adapter, substitutionMatrix = submat3,
                    type = "overlap", gapOpening = 0, gapExtension = Inf)
table(score(ex6Aligns3) > quantile(randomScores3, 0.999), experiment[["width"]])
# Determine if the correct end was chosen
table(end(pattern(ex6Aligns3)) == 36, experiment[["side"]])

## Method 4:  Allow mismatches and indels on the ends with an FDR of 1e-03
quantile(randomScores4, seq(0.99, 1, by = 0.001))
ex6Aligns4 <- pairwiseAlignment(ex6Strings, adapter, type = "overlap")
table(score(ex6Aligns4) > quantile(randomScores4, 0.999), experiment[["width"]])
# Determine if the correct end was chosen
table(end(pattern(ex6Aligns4)) == 36, experiment[["side"]])
@
\item (Advanced) Modify the \Rfunction{simulateReads} function to accept
different equal length adapters on either side (left \& right) of the reads.
How would the methods for trimming the reads change?
<<ans6b>>=
simulateReads <-
function(N, left, right = left, experiment, substitutionRate = 0.01, gapRate = 0.001) {
  leftChars <- strsplit(as.character(left), "")[[1]]
  rightChars <- strsplit(as.character(right), "")[[1]]
  if (length(leftChars) != length(rightChars))
    stop("left and right adapters must have the same number of characters")
  nChars <- length(leftChars)
  sapply(seq_len(N), function(i) {
    width <- experiment[["width"]][i]
    side <- experiment[["side"]][i]
    randomLetters <-
      function(n) sample(DNA_ALPHABET[1:4], n, replace = TRUE) 
    randomLettersWithEmpty <-
      function(n)
      sample(c("", DNA_ALPHABET[1:4]), n, replace = TRUE,
             prob = c(1 - gapRate, rep(gapRate/4, 4)))
    if (side) {
      value <-
        paste(ifelse(rbinom(nChars,1,substitutionRate), randomLetters(nChars), rightChars),
              randomLettersWithEmpty(nChars),
              sep = "", collapse = "")
      value <-
        paste(c(randomLetters(36 - width), substring(value, 1, width)),
                sep = "", collapse = "")
    } else {
      value <-
        paste(ifelse(rbinom(nChars,1,substitutionRate), randomLetters(nChars), leftChars),
              randomLettersWithEmpty(nChars),
              sep = "", collapse = "")
      value <-
        paste(c(substring(value, 37 - width, 36), randomLetters(36 - width)),
                sep = "", collapse = "")
    }
    value
  })
}

leftAdapter <- adapter
rightAdapter <- reverseComplement(adapter)
ex6LeftRightStrings <- simulateReads(N, leftAdapter, rightAdapter, experiment)
ex6LeftAligns4 <- 
  pairwiseAlignment(ex6LeftRightStrings, leftAdapter, type = "overlap")
ex6RightAligns4 <- 
  pairwiseAlignment(ex6LeftRightStrings, rightAdapter, type = "overlap")
scoreCutoff <- quantile(randomScores4, 0.999)
leftAligned <-
  start(pattern(ex6LeftAligns4)) == 1 & score(ex6LeftAligns4) > pmax(scoreCutoff, score(ex6RightAligns4))
rightAligned <-
  end(pattern(ex6RightAligns4)) == 36 & score(ex6RightAligns4) > pmax(scoreCutoff, score(ex6LeftAligns4))
table(leftAligned, rightAligned)
table(leftAligned | rightAligned, experiment[["width"]])
@
\end{enumerate}

\subsection{Exercise 7}
\label{sec:Answers7}
\begin{enumerate}
\item Rerun the global-local alignment of the short reads against the entire
genome. (This may take a few minutes.)
<<ans7a>>=
genBankFullAlign <-
  pairwiseAlignment(srPhiX174, genBankPhage,
                    patternQuality = SolexaQuality(quPhiX174),
                    subjectQuality = SolexaQuality(99L),
                    type = "global-local")
summary(genBankFullAlign, weight = wtPhiX174)
@
\item Plot the coverage of these alignments and use the \Rfunction{slice}
function to find the ranges of alignment. Are there any alignments outside of
the substring region that was used above? \textit{Yes, there are some
alignments outside of the specified substring region.}
<<ans7b>>=
genBankFullCoverage <- coverage(genBankFullAlign, weight = wtPhiX174)
plot(as.integer(genBankFullCoverage), xlab = "Position", ylab = "Coverage", type = "l")
slice(genBankFullCoverage, lower = 1)
@
\item Use the \Rfunction{reverseComplement} function on the bacteriophage
$\phi$ X174 genome. Do any short reads have a higher alignment score on this
new sequence than on the original sequence? \textit{Yes, there are some strings
with a higher score on the new sequence.}
<<ans7c>>=
genBankFullAlignRevComp <-
  pairwiseAlignment(srPhiX174, reverseComplement(genBankPhage),
                    patternQuality = SolexaQuality(quPhiX174),
                    subjectQuality = SolexaQuality(99L),
                    type = "global-local")
table(score(genBankFullAlignRevComp) > score(genBankFullAlign))
@
\end{enumerate}

\subsection{Exercise 8}
\label{sec:Answers8}
\begin{enumerate}
\item Rerun the first set of profiling code, but this time fix the number of
characters in \Robject{string1} to 35 and have the number of characters in
\Robject{string2} range from 5000, 50000, by increments of 5000. What is the
computational order of this simulation exercise? \textit{As expected, the
growth in time is now linear.}
<<ans8a, fig=TRUE>>=
N <- as.integer(seq(5000, 50000, by = 5000))
newTimings <- rep(0, length(N))
names(newTimings) <- as.character(N)
for (i in seq_len(length(N))) {
  string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 35, replace = TRUE), collapse = ""))
  string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
  newTimings[i] <- system.time(pairwiseAlignment(string1, string2, type = "global"))[["user.self"]]
}
newTimings
coef(summary(lm(newTimings ~ poly(N, 2))))
plot(N, newTimings, xlab = "Larger String Size", ylab = "Timing (sec.)",
     type = "l", main = "Global Pairwise Sequence Alignment Timings")
@
\item Rerun the second set of profiling code using the simulations from the
previous exercise with \Rfunarg{scoreOnly} argument set to \Robject{TRUE}. Is
is still twice as fast? \textit{Yes, it is still over twice as fast.}
<<ans8b>>=
newScoreOnlyTimings <- rep(0, length(N))
names(newScoreOnlyTimings) <- as.character(N)
for (i in seq_len(length(N))) {
  string1 <- DNAString(paste(sample(DNA_ALPHABET[1:4], 35, replace = TRUE), collapse = ""))
  string2 <- DNAString(paste(sample(DNA_ALPHABET[1:4], N[i], replace = TRUE), collapse = ""))
  newScoreOnlyTimings[i] <- system.time(pairwiseAlignment(string1, string2, type = "global", scoreOnly = TRUE))[["user.self"]]
}
newScoreOnlyTimings
round((newTimings - newScoreOnlyTimings) / newTimings, 2)
@
\end{enumerate}


\section{Session Information}
All of the output in this vignette was produced under the following
conditions:

<<sessinfo>>=
sessionInfo()
@


\begin{thebibliography}{}

\bibitem{Durbin:1998}
{Durbin, R.}, {Eddy, S.}, {Krogh, A.}, and {Mitchison G.}
\newblock {\em Biological Sequence Analysis}.
\newblock Cambridge UP 1998, sec 2.3.

\bibitem{Haubold:2006}
{Haubold, B.} and {Wiehe, T.}
\newblock {\em Introduction to Computational Biology}.
\newblock Birkhauser Verlag 2006, Chapter 2.

\bibitem{Malde:2008}
{Malde, K.}
\newblock The effect of sequence quality on sequence alignment.
\newblock {\em Bioinformatics}, 24(7):897-900, 2008.

\bibitem{NeedWun:1970}
{Needleman,S.} and {Wunsch,C.}
\newblock A general method applicable to the search for similarities in the
  amino acid sequence of two proteins.
\newblock {\em Journal of Molecular Biology}, 48, 443-453, 1970.

\bibitem{Smith:2003}
{Smith, H.}; {Hutchison, C.}; {Pfannkoch, C.}; and {Venter, C.}
\newblock Generating a synthetic genome by whole genome assembly: \{phi\}X174 bacteriophage from synthetic oligonucleotides.
\newblock {\em Proceedings of the National Academy of Sciences}, 100(26): 15440-15445, 2003.

\bibitem{SmithWater:1981}
{Smith,T.F.} and {Waterman,M.S.}
\newblock Identification of common molecular subsequences.
\newblock {\em Journal of Molecular Biology}, 147, 195-197, 1981.

\end{thebibliography}


\end{document}