This file is indexed.

/usr/lib/R/library/Matrix/test-tools-Matrix.R is in r-cran-matrix 1.2-3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
#### Tools for Package Testing --- in Matrix, sourced by ./test-tools.R
#### -------------------------

### ------- Part III --  "Matrix" (classes) specific ----------------------

lsM <- function(...) {
    for(n in ls(..., envir=parent.frame()))
        if(is((. <- get(n)),"Matrix"))
            cat(sprintf("%5s: '%s' [%d x %d]\n",n,class(.), nrow(.),ncol(.)))
}

asD <- function(m) { ## as "Dense"
    if(canCoerce(m, "denseMatrix")) as(m, "denseMatrix")
    else if(canCoerce(m, (cl <- paste(.M.kind(m), "denseMatrix", sep=''))))
        as(m, cl)
    else if(canCoerce(m, "dgeMatrix")) as(m, "dgeMatrix")
    else stop("cannot coerce to a typical dense Matrix")
}

## "normal" sparse Matrix: Csparse, no diag="U"
asCsp <- function(x) diagU2N(as(x, "CsparseMatrix"))

##' @title quasi-identical dimnames
Qidentical.DN <- function(dx, dy) {

    stopifnot(is.list(dx) || is.null(dx),
	      is.list(dy) || is.null(dy))
    ## "empty"
    (is.null.DN(dx) && is.null.DN(dy)) || identical(dx, dy)
}

##' quasi-identical()  for 'Matrix' matrices
Qidentical <- function(x,y, strictClass = TRUE) {
    if(class(x) != class(y)) {
        if(strictClass || !is(x, class(y)))
           return(FALSE)
        ## else try further
    }
    slts <- slotNames(x)
    if("Dimnames" %in% slts) { ## always (or we have no 'Matrix')
	slts <- slts[slts != "Dimnames"]
	if(!Qidentical.DN(x@Dimnames, y@Dimnames) &&
	   ## allow for "completion" of (NULL, <names>) dimnames of symmetricMatrix:
	   !Qidentical.DN(dimnames(x), dimnames(y)))
	    return(FALSE)
    }
    if("factors" %in% slts) { ## allow one empty and one non-empty 'factors'
        slts <- slts[slts != "factors"]
        ## if both are not empty, they must be the same:
        if(length(xf <- x@factors) && length(yf <- y@factors))
            if(!identical(xf, yf)) return(FALSE)
    }
    for(sl in slts)
        if(!identical(slot(x,sl), slot(y,sl)))
            return(FALSE)
    TRUE
}

##' quasi-identical()  for traditional ('matrix') matrices
mQidentical <- function(x,y, strictClass = TRUE) {
    if(class(x) != class(y)) {
        if(strictClass || !is(x, class(y)))
            return(FALSE)
        ## else try further
    }
    if(!Qidentical.DN(dimnames(x), dimnames(y)))
        return(FALSE)
    identical(unname(x), unname(y))
}

Q.C.identical <- function(x,y, sparse = is(x,"sparseMatrix"),
                          checkClass = TRUE, strictClass = TRUE) {
    if(checkClass && class(x) != class(y)) {
        if(strictClass || !is(x, class(y)))
	   return(FALSE) ## else try further
    }
    if(sparse)
	Qidentical(as(x,"CsparseMatrix"), as(y,"CsparseMatrix"),
		   strictClass=strictClass)
    else Qidentical(x,y, strictClass=strictClass)
}

##' <description>
##'
##' <details>
##' @title  Quasi-equal for  'Matrix' matrices
##' @param x  Matrix
##' @param y  Matrix
##' @param superclasses  x and y must coincide in (not) extending these; set to empty,
##'  if no class/inheritance checks should happen.
##' @param dimnames.check  logical indicating if dimnames(.) much match
##' @param tol  NA (--> use "==") or numerical tolerance for all.equal()
##' @return   logical:  Are x and y (quasi) equal ?
Q.eq <- function(x, y,
		 superclasses =
		 c("sparseMatrix", "denseMatrix",
		   "dMatrix", "lMatrix", "nMatrix"),
		 dimnames.check = TRUE, tol = NA) {
    ## quasi-equal - for 'Matrix' matrices
    if(any(dim(x) != dim(y)))
	return(FALSE)
    if(dimnames.check &&
       !identical(dimnames(x),
		  dimnames(y))) return(FALSE)
    xcl <- getClassDef(class(x))
    ycl <- getClassDef(class(y))
    for(SC in superclasses) {
	if( extends(xcl, SC) &&
	   !extends(ycl, SC)) return(FALSE)
    }
    asC <- ## asCommon
        if((isDense <- extends(xcl,"denseMatrix")))
            function(m) as(m, "matrix")
        else function(m)
            as(as(as(m,"CsparseMatrix"), "dMatrix"), "dgCMatrix")
    if(is.na(tol)) {
	if(isDense)
	    all(x == y | (is.na(x) & is.na(y)))
	else ## 'x == y' blows up for large sparse matrices:
	    isTRUE(all.equal(asC(x), asC(y), tolerance = 0.,
			     check.attributes = dimnames.check))
    }
    else if(is.numeric(tol) && tol >= 0) {
        isTRUE(all.equal(asC(x), asC(y), tolerance = tol,
                         check.attributes = dimnames.check))
    }
    else stop("'tol' must be NA or non-negative number")
}

Q.eq2 <- function(x, y,
		  superclasses = c("sparseMatrix", "denseMatrix"),
		  dimnames.check = FALSE, tol = NA)
    Q.eq(x,y, superclasses=superclasses,
         dimnames.check=dimnames.check, tol=tol)

##' <description>
##'
##' <details>
##' @title  Quasi-equality of  symmpart(m) + skewpart(m) with m
##' @param m  Matrix
##' @param tol  numerical tolerance for all.equal()
##' @return logical
##' @author Martin Maechler
Q.eq.symmpart <- function(m, tol = 8 * .Machine$double.eps)
{
    ss <- symmpart(m) + skewpart(m)
    if(hasNA <- any(iNA <- is.na(ss))) {
	## ss has the NA's symmetrically, but typically m has *not*
	iiNA <- which(iNA) # <- useful! -- this tests  which() methods!
	## assign NA's too -- using correct kind of NA:
	m[iiNA] <- as(NA, Matrix:::.type.kind[Matrix:::.M.kind(m)])
    }
    Q.eq2(m, ss, tol = tol)
}

##' sample.int(n, size, replace=FALSE) for really large n:
sampleL <- function(n, size) {
    if(n < .Machine$integer.max)
	sample.int(n, size)
    else {
	i <- unique(round(n * runif(1.8 * size)))
	while(length(i) < size) {
	    i <- unique(c(i, round(n * runif(size))))
	}
	i[seq_len(size)]
    }
}


## Useful Matrix constructors for testing:

##' @title Random Sparse Matrix
##' @param n
##' @param m number of columns; default (=n)  ==> square matrix
##' @param density the desired sparseness density:
##' @param nnz number of non-zero entries; default from \code{density}
##' @param giveCsparse logical specifying if result should be CsparseMatrix
##' @return a [TC]sparseMatrix,  n x m
##' @author Martin Maechler, Mar 2008
rspMat <- function(n, m = n, density = 1/4, nnz = round(density * n*m),
                   giveCsparse = TRUE)
{
    stopifnot(length(n) == 1, n == as.integer(n),
              length(m) == 1, m == as.integer(m),
              0 <= density, density <= 1,
              0 <= nnz,
	      nnz <= (N <- n*m))
    in0 <- sampleL(N, nnz)
    x <- sparseVector(i = in0, x = as.numeric(1L + seq_along(in0)), length = N)
    dim(x) <- c(n,m)#-> sparseMatrix
    if (giveCsparse) as(x, "CsparseMatrix") else x
}


## originally, from \examples{..}  in ../man/sparseMatrix.Rd :
rSparseMatrix <- function(nrow, ncol, nnz,
			  rand.x = function(n) round(rnorm(nnz), 2), ...)
{
    stopifnot((nnz <- as.integer(nnz)) >= 0,
	      nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
    .Deprecated("rsparsematrix")
    ##=========
    sparseMatrix(i = sample(nrow, nnz, replace = TRUE),
		 j = sample(ncol, nnz, replace = TRUE),
		 x = rand.x(nnz), dims = c(nrow, ncol), ...)
}


rUnitTri <- function(n, upper = TRUE, ...)
{
    ## Purpose: random unit-triangular sparse Matrix .. built from rspMat()
    ## ----------------------------------------------------------------------
    ## Arguments:  n: matrix dimension
    ##         upper: logical indicating if upper or lower triangular
    ##         ...  : further arguments passed to rspMat(), eg. 'density'
    ## ----------------------------------------------------------------------
    ## Author: Martin Maechler, Date:  5 Mar 2008, 11:35

    r <- (if(upper) triu else tril)(rspMat(n, ...))
    ## make sure the diagonal is empty
    diag(r) <- 0
    r <- drop0(r)
    r@diag <- "U"
    r
}

##' Construct a nice (with exact numbers) random artificial  \eqn{A = L D L'}
##' decomposition with a sparse \eqn{n \times n}{n x n} matrix \code{A} of
##' density \code{density} and square root \eqn{D} determined by \code{d0}.
##'
##' If one of \code{rcond} or \code{condest} is true, \code{A} must be
##' non-singular, both use an \eqn{LU} decomposition requiring
##' non-singularity.
##' @title Make Nice Artificial   A = L D L'  (With Exact Numbers) Decomposition
##' @param n matrix dimension \eqn{n \times n}{n x n}
##' @param density ratio of number of non-zero entries to total number
##' @param d0 The sqrt of the diagonal entries of D default \code{10}, to be
##' \dQuote{different} from \code{L} entries.
##' @param rcond logical indicating if \code{\link{rcond}(A, useInv=TRUE)}
##' should be returned which requires non-singular A and D.
##' @param condest logical indicating if \code{\link{condest}(A)$est}
##' should be returned which requires non-singular A and D.
##' @return list with entries A, L, d.half, D, ..., where A inherits from
##' class \code{"\linkS4class{symmetricMatrix}"} and should be equal to
##' \code{as(L \%*\% D \%*\% t(L), "symmetricMatrix")}.
##' @author Martin Maechler, Date: 15 Mar 2008
mkLDL <- function(n, density = 1/3,
                  d0 = 10, d.half = d0 * sample.int(n), # random permutation
                  rcond = (n < 99), condest = (n >= 100))
{
    stopifnot(n == round(n), density <= 1)
    n <- as.integer(n)
    stopifnot(n >= 1, is.numeric(d.half),
              length(d.half) == n, d.half >= 0)
    L <- Matrix(0, n,n)
    nnz <- round(density * n*n)
    L[sample(n*n, nnz)] <- seq_len(nnz)
    L <- tril(L, -1L)
    diag(L) <- 1
    dh2 <- d.half^2
    non.sing <- sum(dh2 > 0) == n
    D <- Diagonal(x = dh2)
    A <- tcrossprod(L * rep(d.half, each=n))
    ## = as(L %*% D %*% t(L), "symmetricMatrix")
    list(A = A, L = L, d.half = d.half, D = D,
	 rcond.A = if (rcond  && non.sing) rcond(A, useInv=TRUE),
	 cond.A  = if(condest && non.sing) condest(A)$est)
}

eqDeterminant <- function(m1, m2, NA.Inf.ok=FALSE, tol=.Machine$double.eps^0.5, ...)
{
    d1 <- determinant(m1) ## logarithm = TRUE
    d2 <- determinant(m2)
    d1m <- as.vector(d1$modulus)# dropping attribute
    d2m <- as.vector(d2$modulus)
    if((identical(d1m, -Inf) && identical(d2m, -Inf)) ||
       ## <==> det(m1) == det(m2) == 0, then 'sign' may even differ !
       (is.na(d1m) && is.na(d2m)))
	## if both are NaN or NA, we "declare" that's fine here
	return(TRUE)
    else if(NA.Inf.ok && ## first can be NA, second infinite:
            ## wanted: base::determinant.matrix() sometimes gives -Inf instead
            ## of NA,e.g. for matrix(c(0,NA,0,0,NA,NA,0,NA,0,0,1,0,0,NA,0,1), 4,4))
            is.na(d1m) && is.infinite(d2m)) return(TRUE)
    ## else
    if(is.infinite(d1m)) d1$modulus <- sign(d1m)* .Machine$double.xmax
    if(is.infinite(d2m)) d2$modulus <- sign(d2m)* .Machine$double.xmax
    ## now they are finite or *one* of them is NA/NaN, and all.equal() will tell so:
    all.equal(d1, d2, tolerance=tol, ...)
}

##' @param A a non-negative definite sparseMatrix, typically "dsCMatrix"
##'
##' @return a list with components resulting from calling
##'    Cholesky(.,  perm = .P., LDL = .L., super = .S.)
##'
##'    for all 2*2*3 combinations of (.P., .L., .S.)
allCholesky <- function(A, verbose = FALSE, silentTry = FALSE)
{
    ## Author: Martin Maechler, Date: 16 Jul 2009

    ##' @param r   list of CHMfactor objects, typically with names() as '. | .'
    ##'
    ##' @return an is(perm,LDL,super) matrix with interesting and *named* rownames
    CHM_to_pLs <- function(r) {
        is.perm <- function(.)
            if(inherits(., "try-error")) NA else !all(.@perm == 0:(.@Dim[1]-1))
        is.LDL <- function(.)if(inherits(., "try-error")) NA else isLDL(.)
	r.st <-
	    cbind(perm	= sapply(r, is.perm),
		  LDL	= sapply(r, is.LDL),
		  super = sapply(r, class) == "dCHMsuper")
	names(dimnames(r.st)) <- list("  p L s", "")
	r.st
    }

    my.Cholesky <- {
	if(verbose)
	    function (A, perm = TRUE, LDL = !super, super = FALSE, Imult = 0, ...) {
		cat(sprintf("Chol..(*, perm= %1d, LDL= %1d, super=%1d):",
			    perm, LDL, super))
		r <- Cholesky(A, perm=perm, LDL=LDL, super=super, Imult=Imult, ...)
		cat(" [Ok]\n")
		r
	    }
	else Cholesky
    }
    logi <- c(FALSE, TRUE)
    d12 <- expand.grid(perm = logi, LDL = logi, super = c(logi,NA),
		       KEEP.OUT.ATTRS = FALSE)
    r1 <- lapply(seq_len(nrow(d12)),
		 function(i) try(do.call(my.Cholesky,
                                         c(list(A = A), as.list(d12[i,]))),
                                 silent=silentTry))
    names(r1) <- apply(d12, 1,
		       function(.) paste(symnum(.), collapse=" "))
    dup.r1 <- duplicated(r1)
    r.all <- CHM_to_pLs(r1)
    if(!identical(dup.r1, duplicated(r.all)))
        warning("duplicated( <pLs-matrix> ) differs from duplicated( <CHM-list> )",
                immediate. = TRUE)
    list(Chol.A = r1,
         dup.r.all = dup.r1,
	 r.all	= r.all,
	 r.uniq = CHM_to_pLs(r1[ ! dup.r1]))
}

##' Cheap  Boolean Arithmetic Matrix product
##' Should be equivalent to  %&%  which is faster [not for large dense!].
##' Consequently mainly used in  checkMatrix()
boolProd <- function(x,y) as((abs(x) %*% abs(y)) > 0, "nMatrix")

###----- Checking a "Matrix" -----------------------------------------

##' Check the compatibility of \pkg{Matrix} package Matrix with a
##' \dQuote{traditional} \R matrix and perform a host of internal consistency
##' checks.
##'
##' @title Check Compatibility of Matrix Package Matrix with Traditional R Matrices
##'
##' @param m   a "Matrix"
##' @param m.m as(m, "matrix")  {if 'do.matrix' }
##' @param do.matrix logical indicating if as(m, "matrix") should be applied;
##'    typically false for large sparse matrices
##' @param do.t  logical: is t(m) "feasible" ?
##' @param doNorm
##' @param doOps
##' @param doSummary
##' @param doCoerce
##' @param doCoerce2
##' @param do.prod
##' @param verbose logical indicating if "progress output" is produced.
##' @param catFUN (when 'verbose' is TRUE): function to be used as generalized cat()
##' @return TRUE (invisibly), unless an error is signalled
##' @author Martin Maechler, since 11 Apr 2008
checkMatrix <- function(m, m.m = if(do.matrix) as(m, "matrix"),
			do.matrix = !isSparse || prod(dim(m)) < 1e6,
			do.t = TRUE, doNorm = TRUE, doOps = TRUE,
                        doSummary = TRUE, doCoerce = TRUE,
			doCoerce2 = doCoerce && !isRsp, doDet = do.matrix,
			do.prod = do.t && do.matrix && !isRsp,
			verbose = TRUE, catFUN = cat)
{
    ## is also called from  dotestMat()  in ../tests/Class+Meth.R

    stopifnot(is(m, "Matrix"))
    validObject(m) # or error(....)

    clNam <- class(m)
    cld <- getClassDef(clNam) ## extends(cld, FOO) is faster than is(m, FOO)
    isCor    <- extends(cld, "corMatrix")
    isSym    <- extends(cld, "symmetricMatrix")
    if(isSparse <- extends(cld, "sparseMatrix")) { # also true for these
	isRsp  <- extends(cld, "RsparseMatrix")
	isDiag <- extends(cld, "diagonalMatrix")
	isInd  <- extends(cld, "indMatrix")
	isPerm <- extends(cld, "pMatrix")
    } else isRsp <- isDiag <- isInd <- isPerm <- FALSE
    isTri <- !isSym && !isDiag && !isInd && extends(cld, "triangularMatrix")
    is.n     <- extends(cld, "nMatrix")
    nonMatr  <- clNam != (Mcl <- MatrixClass(clNam, cld))

    Cat	 <- function(...) if(verbose) cat(...)
    CatF <- function(...) if(verbose) catFUN(...)
    ## warnNow <- function(...) warning(..., call. = FALSE, immediate. = TRUE)

    DO.m <- function(expr) if(do.matrix) eval(expr) else TRUE

    vec <- function(x) {
	dim(x) <- c(length(x), 1L)
	dimnames(x) <- list(NULL,NULL)
	x
    }
    eps16 <- 16 * .Machine$double.eps

    ina <- is.na(m)
    if(do.matrix) {
	stopifnot(all(ina == is.na(m.m)),
		  all(is.finite(m) == is.finite(m.m)),
		  all(is.infinite(m) == is.infinite(m.m)),
		  all(m == m | ina), ## check all() , "==" [Compare], "|" [Logic]
		  if(ncol(m) > 0) identical3(unname(m[,1]), unname(m.m[,1]),
					     as(m[,1,drop=FALSE], "vector"))
		  else identical(as(m, "vector"), as.vector(m.m)))
	if(any(m != m & !ina)) stop(" any (m != m) should not be true")
    } else {
	if(any(m != m)) stop(" any (m != m) should not be true")
        if(ncol(m) > 0)
             stopifnot(identical(unname(m[,1]), as(m[,1,drop=FALSE], "vector")))
        else stopifnot(identical(as(m, "vector"), as.vector(as(m, "matrix"))))
    }
    if(do.t) {
	tm <- t(m)
	if(isSym) ## check that t() swaps 'uplo'  L <--> U :
	    stopifnot(c("L","U") == sort(c(m@uplo, tm@uplo)))
	ttm <- t(tm)
        ## notInd: "pMatrix" ok, but others inheriting from "indMatrix" are not
        notInd <- (!isInd || isPerm)
	if(notInd && (extends(cld, "CsparseMatrix") ||
	   extends(cld, "generalMatrix") || isDiag))
            stopifnot(Qidentical(m, ttm, strictClass = !nonMatr))
	else if(do.matrix) {
	    if(notInd) stopifnot(nonMatr || class(ttm) == clNam)
	    stopifnot(all(m == ttm | ina))
	    ## else : not testing
	}


	## crossprod()	%*%  etc
	if(do.prod) {
	    c.m <-  crossprod(m)
	    tcm <- tcrossprod(m)
            tolQ <- if(isSparse) NA else eps16
	    stopifnot(dim(c.m) == rep.int(ncol(m), 2),
		      dim(tcm) == rep.int(nrow(m), 2),
		      ## FIXME: %*% drops dimnames
		      Q.eq2(c.m, tm %*% m, tol = tolQ),
		      Q.eq2(tcm, m %*% tm, tol = tolQ),
                      ## should work with dimnames:
		      Q.eq(m %&% tm, boolProd(m, tm), superclasses=NULL, tol = 0)
                     ,
		      Q.eq(tm %&% m, boolProd(tm, m), superclasses=NULL, tol = 0)
                      )
	}
    }
    if(!do.matrix) {
	CatF(" will *not* coerce to 'matrix' since do.matrix is FALSE\n")
    } else if(doNorm) {
	CatF(sprintf(" norm(m [%d x %d]) :", nrow(m), ncol(m)))
	for(typ in c("1","I","F","M")) {
	    Cat('', typ, '')
	    stopifnot(all.equal(norm(m,typ), norm(m.m,typ)))
	}
	Cat(" ok\n")
    }
    if(do.matrix && doSummary) {
	summList <- lapply(getGroupMembers("Summary"), get,
			   envir = asNamespace("Matrix"))
	CatF(" Summary: ")
	for(f in summList) {
	    ## suppressWarnings():  e.g. any(<double>)	would warn here:
	    r <- suppressWarnings(if(isCor) all.equal(f(m), f(m.m)) else
				  identical(f(m), f(m.m)))
	    if(!isTRUE(r)) {
		f.nam <- sub("..$", '', sub("^\\.Primitive..", '', format(f)))
		## prod() is delicate: NA or NaN can both happen
		(if(f.nam == "prod") message else stop)(
		    sprintf("%s(m) [= %g] differs from %s(m.m) [= %g]",
			    f.nam, f(m), f.nam, f(m.m)))
	    }
	}
	if(verbose) cat(" ok\n")
    }

    ## and test 'dim()' as well:
    d <- dim(m)
    isSqr <- d[1] == d[2]
    if(do.t) stopifnot(identical(diag(m), diag(t(m))))
    ## TODO: also === diag(band(m,0,0))

    if(prod(d) < .Machine$integer.max && !extends(cld, "modelMatrix")) {
	vm <- vec(m)
	stopifnot(is(vm, "Matrix"), validObject(vm), dim(vm) == c(d[1]*d[2], 1))
    }

    if(!isInd)
        m.d <- local({ m. <- m; diag(m.) <- diag(m); m. })
    if(do.matrix)
    stopifnot(identical(dim(m.m), dim(m)),
	      ## base::diag() keeps names [Matrix FIXME]
## now that "pMatrix" subsetting gives *LOGICAL*
## 	      if(isPerm) {
## 		  identical(as.integer(unname(diag(m))), unname(diag(m.m)))
## 	      } else
	      identical(unname(diag(m)),
			unname(diag(m.m))),## not for NA: diag(m) == diag(m.m),
	      identical(nnzero(m), sum(m.m != 0)),
	      identical(nnzero(m, na.= FALSE), sum(m.m != 0, na.rm = TRUE)),
	      identical(nnzero(m, na.= TRUE),  sum(m.m != 0 | is.na(m.m)))
	      )

    if(isSparse) {
	n0m <- drop0(m) #==> n0m is Csparse
	has0 <- !Qidentical(n0m, as(m,"CsparseMatrix"))
	if(!isInd && !isRsp &&
           !(extends(cld, "TsparseMatrix") && anyDuplicatedT(m, di = d)))
                                        # 'diag<-' is does not change attrib:
	    stopifnot(Qidentical(m, m.d))# e.g., @factors may differ
    }
    else if(!identical(m, m.d)) { # dense : 'diag<-' is does not change attrib
	if(isTri && m@diag == "U" && m.d@diag == "N" &&
	   all(m == m.d))
	    message("unitriangular m: diag(m) <- diag(m) lost \"U\" .. is ok")
	else stop("diag(m) <- diag(m) has changed 'm' too much")
    }
    ## use non-square matrix when "allowed":

    ## m12: sparse and may have 0s even if this is not: if(isSparse && has0)
    m12 <- as(as(  m, "lMatrix"),"CsparseMatrix")
    m12 <- drop0(m12)
    if(do.matrix) {
	## "!" should work (via as(*, "l...")) :
	m11 <- as(as(!!m,"CsparseMatrix"), "lMatrix")
	if(!Qidentical(m11, m12))
	    stopifnot(Qidentical(as(m11, "generalMatrix"),
				 as(m12, "generalMatrix")))
    }
    if(isSparse && !is.n) {
	## ensure that as(., "nMatrix") gives nz-pattern
	CatF("as(., \"nMatrix\") giving full nonzero-pattern: ")
	n1 <- as(m, "nMatrix")
	ns <- as(m, "nsparseMatrix")
	stopifnot(identical(n1,ns),
		  isDiag || ((if(isSym) Matrix:::nnzSparse else sum)(n1) ==
			     length(if(isInd) m@perm else diagU2N(m)@x)))
        Cat("ok\n")
    }

    if(doOps) {
	## makes sense with non-trivial m (!)
	CatF("2*m =?= m+m: ")
	if(identical(2*m, m+m)) Cat("identical\n")
	else if(do.matrix) {
	    eq <- as(2*m,"matrix") == as(m+m, "matrix") # but work for NA's:
	    stopifnot(all(eq | (is.na(m) & is.na(eq))))
	    Cat("ok\n")
	} else {# !do.matrix
	    stopifnot(identical(as(2*m, "CsparseMatrix"),
                                as(m+m, "CsparseMatrix")))
	    Cat("ok\n")
	}
	if(do.matrix) {
	    ## m == m etc, now for all, see above
	    CatF("m >= m for all: "); stopifnot(all(m >= m | ina)); Cat("ok\n")
	}
	if(prod(d) > 0) {
	    CatF("m < m for none: ")
	    mlm <- m < m
	    if(!any(ina)) stopifnot(!any(mlm))
	    else if(do.matrix) stopifnot(!any(mlm & !ina))
	    else { ## !do.matrix & any(ina) :  !ina can *not* be used
		mlm[ina] <- FALSE
		stopifnot(!any(mlm))
	    }
	    Cat("ok\n")
	}

	if(isSqr) {
	    if(do.matrix) {
		## determinant(<dense>) "fails" for triangular with NA such as
		## (m <- matrix(c(1:0,NA,1), 2))
		CatF("symmpart(m) + skewpart(m) == m: ")
		Q.eq.symmpart(m)
		CatF("ok;  determinant(): ")
		if(!doDet)
		    Cat(" skipped (!doDet): ")
		else if(any(is.na(m.m)) && extends(cld, "triangularMatrix"))
		    Cat(" skipped: is triang. and has NA: ")
		else
		    stopifnot(eqDeterminant(m, m.m, NA.Inf.ok=TRUE))
		Cat("ok\n")
	    }
	} else assertError(determinant(m))
    }# end{doOps}

    if(doCoerce && do.matrix && canCoerce("matrix", clNam)) {
	CatF("as(<matrix>, ",clNam,"): ", sep='')
	m3 <- as(m.m, clNam)
	Cat("valid:", validObject(m3), "\n")
	## m3 should ``ideally'' be identical to 'm'
    }

    if(doCoerce2 && do.matrix) { ## not for large m:  !m will be dense
	if(is.n) {
	    mM <- if(nonMatr) as(m, Mcl) else m
	    stopifnot(identical(mM, as(as(m, "dMatrix"),"nMatrix")),
		      identical(mM, as(as(m, "lMatrix"),"nMatrix")),
		      identical(which(m), which(m.m)))
	}
	else if(extends(cld, "lMatrix")) { ## should fulfill even with NA:
	    stopifnot(all(m | !m | ina), !any(!m & m & !ina))
	    if(extends(cld, "TsparseMatrix")) # allow modify, since at end here
		m <- uniqTsparse(m, clNam)
	    stopifnot(identical(m, m & TRUE),
		      identical(m, FALSE | m))
	    ## also check the  coercions to [dln]Matrix
	    m. <- if(isSparse && has0) n0m else m
	    m1. <- m. # replace NA by 1 in m1. , carefully not changing class:
	    if(any(ina)) m1.@x[is.na(m1.@x)] <- TRUE
	    stopifnot(identical(m. , as(as(m. , "dMatrix"),"lMatrix")),
		      clNam == "ldiMatrix" || # <- there's no "ndiMatrix"
		      ## coercion to n* and back: only identical when no extra 0s:
		      identical(m1., as(as(m1., "nMatrix"),"lMatrix")),
		      identical(which(m), which(m.m)))
	}
	else if(extends(cld, "dMatrix")) {
	    m. <- if(isSparse && has0) n0m else m
	    m1 <- (m. != 0)*1
	    if(!isSparse && substr(clNam,1,3) == "dpp")
		## no "nppMatrix" possible
		m1 <- unpack(m1)

	    m1. <- m1 # replace NA by 1 in m1. , carefully not changing class:
	    if(any(ina)) m1.@x[is.na(m1.@x)] <- 1
	    ## coercion to n* (nz-pattern!) and back: only identical when no extra 0s and no NAs:
	    stopifnot(Q.C.identical(m1., as(as(m., "nMatrix"),"dMatrix"),
				    isSparse, checkClass = FALSE),
		      Q.C.identical(m1 , as(as(m., "lMatrix"),"dMatrix"),
				    isSparse, checkClass = FALSE))
	}

	if(extends(cld, "triangularMatrix")) {
	    mm. <- m
	    i0 <- if(m@uplo == "L")
		upper.tri(mm.) else lower.tri(mm.)
	    n.catchWarn <- if(is.n) suppressWarnings else identity
	    n.catchWarn( mm.[i0] <- 0 ) # ideally, mm. remained triangular, but can be dge*
	    CatF("as(<triangular (ge)matrix>, ",clNam,"): ", sep='')
	    tm <- as(as(mm., "triangularMatrix"), clNam)
	    Cat("valid:", validObject(tm), "\n")
	    if(m@uplo == tm@uplo) ## otherwise, the matrix effectively was *diagonal*
		## note that diagU2N(<dtr>) |-> dtC :
		stopifnot(Qidentical(tm, as(diagU2N(m), clNam)))
	}
	else if(isDiag) {

	    ## TODO

	} else {

	    ## TODO
	}
    }# end {doCoerce2 && ..}

    if(doCoerce && isSparse) { ## coerce to sparseVector and back :
	v <- as(m, "sparseVector")
	stopifnot(length(v) == prod(d))
	dim(v) <- d
	stopifnot(Q.eq2(m, v))
    }

    invisible(TRUE)
}