/usr/share/slsh/help/randfuns.hlp is in slsh 2.3.0-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | rand_exp
SYNOPSIS
Generate exponentially distributed random numbers
USAGE
X = rand_exp([Rand_Type g,] beta [,num])
DESCRIPTION
This function generates random numbers that are distributed according
to an exponential distribution with parameter beta > 0. The
distribution's probability density is given by
P(x,beta) = (1/beta) exp(-x/beta)
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
NOTES
The exponential generator is commonly used to simulate waiting times
between events.
SEE ALSO
rand_new, rand_uniform
--------------------------------------------------------------
rand_int
SYNOPSIS
Generate random integers
USAGE
X = rand_int ([Rand_Type g,] imin, imax [,num])
DESCRIPTION
This function may be used to generate a random integer `X' such
that `imin <= X <= imax'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform, rand, rand_new
--------------------------------------------------------------
rand_tdist
SYNOPSIS
Generate random numbers from the Student t distribution
USAGE
X = rand_tdist ([Rand_Type g,] nu [,num])
DESCRIPTION
This function generates random numbers that are distributed according
to the Student-t distribution with nu>0.0 degrees of freedom.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform, rand_new, rand_chisq, rand_fdist
--------------------------------------------------------------
rand_fdist
SYNOPSIS
Generate random numbers from the F distribution
USAGE
X = rand_fdist ([Rand_Type g,], nu1, nu2 [,num])
DESCRIPTION
This function generates random numbers that are distributed according
to the F-distribution, which is the ratio of two chi-squared
distributed variates whose degrees of freedom are given by
`nu1' (numerator) and `nu2' (denominator).
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform, rand_chisq, rand_tdist, rand_gauss, rand_new
--------------------------------------------------------------
rand_chisq
SYNOPSIS
Generate Chi-Square distributed random numbers
USAGE
X = rand_fdist ([Rand_Type g,] nu, [,num])
DESCRIPTION
This function generates random numbers that are distributed according
to the Chi-squared distribution with `nu > 0' degrees of freedom.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform, rand_fdist, rand_tdist, rand_gauss, rand_new
--------------------------------------------------------------
rand_flat
SYNOPSIS
Generate uniformly distributed random numbers
USAGE
X = rand_fdist ([Rand_Type g,] xmin, xmax [,num])
DESCRIPTION
This function generates random double-precision floating point
numbers that are uniformly distributed in the range
`xmin<=X<xmax'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform, rand_uniform_pos, rand_int, rand, rand_new
--------------------------------------------------------------
rand_gamma
SYNOPSIS
Generate Gamma distributed random numbers
USAGE
X = rand_gamma ([Rand_Type g,], k, theta [,num])
DESCRIPTION
This function returns random deviates that are Gamma-distributed
according to the probability density
P(x; k,theta) = x^(k-1)*exp(-x/theta)/(theta^k * Gamma(k))
where `k,theta>0.0'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_beta, rand_uniform, rand_binomial, rand_new
--------------------------------------------------------------
rand_binomial
SYNOPSIS
Generate random numbers from the binomial distribution
USAGE
X = rand_binomial ([Rand_Type g,], p, n, [,num])
DESCRIPTION
This function generates binomial distributed random numbers
according to the probability density
P(x;p,n) = n!/(k!*(n-k)!) * p^k * (1-p)^(n-k)
where `n' is a non-negative integer and `0<=p<=1'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_gamma, rand_poisson, rand_uniform, rand_new
--------------------------------------------------------------
rand_poisson
SYNOPSIS
Generate Poisson distributed random numbers
USAGE
k = rand_poisson ([Rand_Type g,] mu [,num])
DESCRIPTION
This function generates random unsigned integers that are
poisson-distributed according to the probability distribution
P(k;mu) = mu^k/k! * exp(-mu)
where `mu>0.0'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_gauss, rand_uniform, rand_binomial, rand_new
--------------------------------------------------------------
rand_geometric
SYNOPSIS
Generate random numbers from the geometric distribution
USAGE
k = rand_geometric ([Rand_Type g,] p [,num])
DESCRIPTION
This function generates random numbers that are distributed
according to a geometric distribution with a probability density
P(k; p) = p*(1-p)^(k-1)
where `0<=p<=1'
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_poisson, rand_exp, rand_gauss, rand_uniform, rand_new
--------------------------------------------------------------
rand_cauchy
SYNOPSIS
Generate random numbers from the Cauchy distribution
USAGE
X = rand_cauchy ([Rand_Type g,] gamma [,num])
DESCRIPTION
This function generates random numbers that are distributed
according to a cauchy-distribution with a probability density
P(x; gamma) = 1/(PI*gamma)/(1+(x/gamma)^2)
where `gamma>=0.0'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_gauss, rand_poisson, rand_exp, rand_new
--------------------------------------------------------------
rand_beta
SYNOPSIS
Generate random numbers from the beta distribution
USAGE
X = rand_fdist ([Rand_Type g,] a, b [,num])
DESCRIPTION
This function generates random numbers that are distributed
according to a Beta-distribution with a probability density
P(x; a,b) = x^(a-1)*(1-x)^(b-1)/B(a,b)
where `a, b > 0'.
SEE ALSO
rand_gamma, rand_binomial, rand_chisq
--------------------------------------------------------------
rand_gauss
SYNOPSIS
Generate gaussian-distributed random numbers
USAGE
X = rand_gauss ([Rand_Type g,] sigma [,num])
DESCRIPTION
This function generates gaussian random numbers with the specified
sigma and mean of 0 according to the probability density
P(x; sigma) = 1/sqrt(2*PI*sigma^2) * exp(-0.5*x^2/sigma^2)
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
NOTES
This implementation utilizes the Box-Muller algorithm.
SEE ALSO
rand_uniform, rand_poisson, rand_chisq, rand_gauss, rand_new
--------------------------------------------------------------
rand
SYNOPSIS
Generate random integers numbers
USAGE
X = rand ([Rand_Type g,] [,num])
DESCRIPTION
This function generates unsigned 32 bit randomly distributed
integers on the closed interval 0<=X<=0xFFFFFFFFUL.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_new, rand_int, rand_uniform, rand_flat
--------------------------------------------------------------
rand_uniform_pos
SYNOPSIS
Generate uniform positive random numbers
USAGE
X = rand_uniform_pos ([Rand_Type] [num])
DESCRIPTION
This function generates uniformly distributed random numbers in open
interval `0<X<1'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform, rand_new
--------------------------------------------------------------
rand_uniform
SYNOPSIS
Generate uniform random numbers
USAGE
X = rand_uniform ([Rand_Type g] [num])
DESCRIPTION
This function generates uniformly distributed double precision
numbers on the semi-closed interval `0<=r<1'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
SEE ALSO
rand_uniform_pos, rand_int, rand_flat, rand_new
--------------------------------------------------------------
srand
SYNOPSIS
Seed the random number generator
USAGE
srand ([Rand_Type g,] Array_Type seeds)
DESCRIPTION
This function may be used to seed an instance of a rand number
generator using the values of an array of an unsigned long integers.
If a generator (created by `rand_new') is specified as the first
argument, then is will be seeded; otherwise, the seeds will
get applied to the default generator.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
The `num' parameter indicates that `num' random values are to
be generated and returned as an array.
EXAMPLE
gen = rand_new ();
srand (gen, [_time(), _pid(), 0xFF80743]);
SEE ALSO
rand_new, rand, rand_uniform
--------------------------------------------------------------
rand_new
SYNOPSIS
Instantiate a new random number generator
USAGE
Rand_Type rand_new ([array-of-seeds])
DESCRIPTION
This function creates a new instance of the basic random number
generator. An optional array of 32 bit unsigned integers may be used
to seed the generator. By default, the generator is seeding using
the current time and process id. The `srand' function may also
be used to seed the generator. The generator created by the
`rand_new' function may be passed as the first argument to most
of the other functions in the module to indicate that this instance
should be used as the basic generator.
EXAMPLE
The following example shows how to create an array of 512 uniform
random numbers derived from the default instance of the basic
generator:
x = rand_uniform (512);
A specific instance of the generator may be created using the
`rand_new' function and used by `rand_uniform' as follows:
g = rand_new ([0x1234, 0x5678912, 0xEFAB1234]);
x = rand_uniform (g, 512);
NOTES
The generator is a hybrid one that sums the results of 3 separate
generators: George Marsaglia's MZRAN13 generator, a multiply with
carry generator (also by Marsaglia), and a product generator. The
combined generator has a 192 bit state and a period exceeding 10^46.
The resulting random sequences were tested using version 2.24.4 of
the dieharder random number testing program. The tests showed that
this generator performed better than the famous Marsenne
Twister (`mt19937') both in terms of randomness and speed. More
information about the test results may be found at
`http://www.jedsoft.org/slang/modules/rand.html'.
The `mt19937' generator is separately available via the GSL
module.
SEE ALSO
srand, rand_int, rand_uniform
--------------------------------------------------------------
rand_sample
SYNOPSIS
Randomly sample from one or more arrays
USAGE
(b1 [,b2,...]) = rand_sample ([Rand_Type g,] a1 [,a2,...], num);
DESCRIPTION
This function may be used to randomly sample `num' elements from
one or more arrays (`a1,...'). The arrays must be consistent in
the sense that they must have the same leading dimension, which is
the one to be sampled.
The optional first argument may be used to specify a different
instance of a random number generator. Otherwise, the default
generator will be used.
EXAMPLE
Suppose A is a 1-d array with 20 elements, and B is a 2d array with
dimensions [20,30]. Then
(A1, B1) = rand_sample (A, B, 5);
will produce a 1d array A1 with 5 elements and a 2d array B1 with
dimensions [5,30].
NOTES
The indices used to sample the arrays are created using the first
`num' elements of a random permutation of the integers
`[0:dim0-1]' where `dim0' is the size of the leading
dimension. The same set of indices are used for all the arrays.
Hence any correspondence between `a0[i,..]' and `a1[i,...'
will be preserved in the samples.
SEE ALSO
rand_permutation, rand_new
--------------------------------------------------------------
rand_permutation
SYNOPSIS
Generate a random permutation of integers
USAGE
p = rand_permutation ([Rand_Type g,] Int_Type n)
DESCRIPTION
This function may be used to generate a random permutation of the
sequence of integers `0,1,..,n-1'.
The optional parameter `g' may be used to
specify the underlying random number generator. See the
documentation for the `rand_new' function for more information.
SEE ALSO
rand_sample
--------------------------------------------------------------
|