/usr/bin/tosthreads-dynamic-app is in tinyos-tools 1.4.2-3.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | #!/usr/bin/python2
# Copyright (c) 2008 Johns Hopkins University.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# - Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the
# distribution.
# - Neither the name of the copyright holders nor the names of
# its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
# THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
# @author Chieh-Jan Mike Liang <cliang4@cs.jhu.edu>
# @author Razvan Musaloiu-E. <razvanm@cs.jhu.edu>
# @author Kevin Klues <klueska@cs.stanford.edu>
import sys, subprocess
import struct
sys.path.append("/usr/lib/x86_64-linux-gnu/tinyos/tosthreads")
def error_exit( s ):
sys.stderr.write("\n" + s + "\n\n")
exit( 2 )
def exit_usage():
error_exit( "Usage: tosthreads-dynamic-app [-a --array --api=<standard, tenet> ] <obj_file> <bin_file> <tos_file>" )
#Handle arguments........
from getopt import *
try:
opts, args = getopt(sys.argv[1:], "a" ,['array', 'api='])
except GetoptError, err:
print str(err) # will print something like "option -a not recognized"
exit_usage()
array_opt = False
api_opt = False
valid_apis = ["standard", "tenet"];
for o, a in opts:
if o == "--api" and (a not in valid_apis):
exit_usage()
elif o == "--api" and a == "tenet":
api_opt = True
import tosthreads_tenet_api as tosthread_slcs_extfun
elif o == "--api" and a == "standard":
api_opt = True
import tosthreads_standard_api as tosthread_slcs_extfun
elif o == "-a" or o == "--array":
array_opt = True
else:
exit_usage()
if api_opt == False:
import tosthreads_standard_api as tosthread_slcs_extfun
if len( args ) != 3:
exit_usage()
def slice(v, s):
r = []
for i in range(0, len(v), s):
r.append(v[i:i+s])
return r
def cmp(x, y):
if int(x[0]) > int(y[0]):
return 1
elif int(x[0]) == int(y[0]):
if x[1] > y[1]:
return 1
elif x[1] == y[1]:
return 0
else:
return -1
else:
return -1
# ===== STEP 0: Prepares function-ID maps ===== #
map_extfun = tosthread_slcs_extfun.map_extfun
map_hook = {"tosthread_main":0}
map_intfun = dict()
map_intfun_counter = 0
# ===== STEP 1: Reads in the binary of the loadable program ===== #
s = open(args[1]).read()
code = ["0x%02x" % (struct.unpack("B", i)) for i in s]
# ===== STEP 2: Allocation Table ===== #
var = {} # var[variable_name] = (variable_size, allocated_addr)
alloc = {} # alloc[variable_name] = ((offset, addr), (offset, addr), ...)
compact_alloc = [] # Final allocation table: [("real" addr, next patching addr), ...]
compact_alloc_binary = []
dataSection = {}
dataSection_values = []
dataSection_values_binary = []
# Gets variables' name and size
p = subprocess.Popen(["msp430-readelf", "-W", "-s", args[0]], stdout=subprocess.PIPE)
line = p.stdout.readline()
fm_addr = 0
while line:
v = line.split()
if len(v) == 8 and v[4] == "GLOBAL" and (v[6] == "COM" or v[6] == "3"):
name = v[-1]
if name != "TOS_NODE_ID":
size = int(v[2])
var[name] = [size, fm_addr]
alloc[name] = [] # Filled later
if v[6] == "3":
dataSection[name] = [int(v[1], 16)]
fm_addr += size
line = p.stdout.readline()
# Gets the variables' location in the loadable program
p = subprocess.Popen(["msp430-readelf", "-W", "-r", args[0]], stdout=subprocess.PIPE)
line = p.stdout.readline()
while line:
v = line.split()
if len(v) == 7:
name = v[4]
if name in var and name != "TOS_NODE_ID":
addr = int(v[0], 16)
offset = int(v[-1], 16)
alloc[name].append([offset, addr])
line = p.stdout.readline()
# Patches the binary for address-chaining, and compacts the allocation table
for name in alloc.keys():
alloc[name].sort(cmp) # Sort by offset, then addr
for i in range(len(alloc[name])):
# Sees if address-chaining if necessary
if (i + 1) < len(alloc[name]) and alloc[name][i][0] == alloc[name][i + 1][0]:
code[alloc[name][i][1]] = "0x%02x" % ((alloc[name][i + 1][1]) & 0xFF)
code[alloc[name][i][1] + 1] = "0x%02x" % ((alloc[name][i + 1][1] >> 8) & 0xFF)
# Sees if the current entry should be included
if i == 0 or (alloc[name][i - 1][0] != alloc[name][i][0]):
real_addr = var[name][1] + alloc[name][i][0] # "real" address = FM + offset
compact_alloc.append("{%d, (void*)0x%04x} /* %s + %d */" % (real_addr, alloc[name][i][1], name, alloc[name][i][0])) # ["real" addr, next patching addr]
compact_alloc_binary.append("0x%02x" % (real_addr & 0xFF))
compact_alloc_binary.append("0x%02x" % ((real_addr >> 8) & 0xFF))
compact_alloc_binary.append("0x%02x" % (alloc[name][i][1] & 0xFF))
compact_alloc_binary.append("0x%02x" % ((alloc[name][i][1] >> 8) & 0xFF))
if name in dataSection.keys():
#print ".data:", real_addr, dataSection[name][0], var[name][0]
dataSection_values_binary.append("0x%02x" % (real_addr & 0xFF))
dataSection_values_binary.append("0x%02x" % ((real_addr >> 8) & 0xFF))
dataSection_values_binary.append("0x%02x" % (dataSection[name][0] & 0xFF))
dataSection_values_binary.append("0x%02x" % ((dataSection[name][0] >> 8) & 0xFF))
dataSection_values_binary.append("0x%02x" % (var[name][0] & 0xFF))
dataSection_values_binary.append("0x%02x" % ((var[name][0] >> 8) & 0xFF))
# ===== STEP 3: Full relocation table (compacted in step 5) ===== #
fun = []
global_fun = []
local_fun = []
# Gets both where functions are called and where it is located
p = subprocess.Popen(["msp430-readelf", "-W", "-s", args[0]], stdout=subprocess.PIPE)
line = p.stdout.readline()
while line:
v = line.split()
if len(v) == 8 and v[4] == "GLOBAL":
if v[3] == "NOTYPE" or v[3] == "FUNC":
fun.append(v[-1])
line = p.stdout.readline()
# Gets global and local function calls and their locations in the loadable program
p = subprocess.Popen(["msp430-readelf", "-W", "-r", args[0]], stdout=subprocess.PIPE)
line = p.stdout.readline()
while line and line != "There are no relocations in this file.\n":
v = line.split()
if len(v) == 7:
name = v[4]
addr = int(v[0], 16)
offset = int(v[-1], 16)
if name in fun:
if offset != 0:
print "ERROR: Non zero offset for", name, "at", offset
if map_extfun.has_key(name):
global_fun.append([map_extfun[name], addr, name])
else:
if not map_intfun.has_key(name):
map_intfun[name] = [map_intfun_counter, 0] # fun_id, addr
map_intfun_counter += 1
local_fun.append([map_intfun[name][0], addr, name])
line = p.stdout.readline()
# ===== STEP 4: Global and local symbol tables ===== #
global_sym = []
local_sym = []
global_sym_binary = []
compact_global_sym_binary = ["0x00", "0x00"] # Just have address to one symbol (should be to main())
p = subprocess.Popen(["msp430-objdump", "-t", args[0]], stdout=subprocess.PIPE)
line = p.stdout.readline()
while line:
v = line.split()
if len(v) == 6 and \
v[1] == "g" and v[2] == 'F' and v[3] == '.text':
name = v[5]
addr = int(v[0], 16)
if map_hook.has_key(name):
global_sym.append('{%d, (void*)0x%04x} /* %s */' % (map_hook[name], addr, name))
global_sym_binary.append("0x%02x" % (map_hook[name] & 0xFF))
global_sym_binary.append("0x%02x" % ((map_hook[name] >> 8) & 0xFF))
global_sym_binary.append("0x%02x" % (addr & 0xFF))
global_sym_binary.append("0x%02x" % ((addr >> 8) & 0xFF))
compact_global_sym_binary = ["0x%02x" % (addr & 0xFF)]
compact_global_sym_binary.append("0x%02x" % ((addr >> 8) & 0xFF))
else:
if map_intfun.has_key(name):
local_sym.append('{%s, (void*)0x%04x} /* %s */' % (map_intfun[name][0], addr, name))
map_intfun[name] = [map_intfun[name][0], addr]
line = p.stdout.readline()
# ===== STEP 5: Patches the binary for address-chaining, and compacts the relocation table ===== #
global_fun_binary = []
local_fun_binary = []
# Patches the binary code
global_fun.sort(cmp)
for i in range(len(global_fun)):
# Sees if address-chaining if necessary
if (i + 1) < len(global_fun) and global_fun[i][0] == global_fun[i + 1][0]:
code[global_fun[i][1]] = "0x%02x" % ((global_fun[i + 1][1]) & 0xFF)
code[global_fun[i][1] + 1] = "0x%02x" % ((global_fun[i + 1][1] >> 8) & 0xFF)
local_fun.sort(cmp)
for i in range(len(local_fun)):
# Sees if address-chaining if necessary
if (i + 1) < len(local_fun) and local_fun[i][0] == local_fun[i + 1][0]:
code[local_fun[i][1]] = "0x%02x" % ((local_fun[i + 1][1]) & 0xFF)
code[local_fun[i][1] + 1] = "0x%02x" % ((local_fun[i + 1][1] >> 8) & 0xFF)
# Compacts the relocation table
i = 0
while True:
if i >= len(global_fun):
break
if (i + 1) < len(global_fun) and (global_fun[i][0] == global_fun[i + 1][0]):
del global_fun[i + 1]
else:
global_fun_binary.append("0x%02x" % (global_fun[i][0] & 0xFF))
global_fun_binary.append("0x%02x" % ((global_fun[i][0] >> 8) & 0xFF))
global_fun_binary.append("0x%02x" % (global_fun[i][1] & 0xFF))
global_fun_binary.append("0x%02x" % ((global_fun[i][1] >> 8) & 0xFF))
global_fun[i] = '{%d, (void*)0x%04x} /* %s */' % (global_fun[i][0], global_fun[i][1], global_fun[i][2])
i += 1
i = 0
while True:
if i >= len(local_fun):
break
if (i + 1) < len(local_fun) and (local_fun[i][0] == local_fun[i + 1][0]):
del local_fun[i + 1]
else:
local_fun_binary.append("0x%02x" % (map_intfun[local_fun[i][2]][1] & 0xFF))
local_fun_binary.append("0x%02x" % ((map_intfun[local_fun[i][2]][1] >> 8) & 0xFF))
local_fun_binary.append("0x%02x" % (local_fun[i][1] & 0xFF))
local_fun_binary.append("0x%02x" % ((local_fun[i][1] >> 8) & 0xFF))
local_fun[i] = '{%d, (void*)0x%04x} /* %s */' % (map_intfun[local_fun[i][2]][1], local_fun[i][1], local_fun[i][2])
i += 1
# ===== STEP 6: Prints out the image ===== #
#print "uint16_t g_sym_count = %d;" % (len(global_sym))
#print "uint16_t alloc_count = %d;" % (len(compact_alloc))
#print "uint16_t g_reloc_count = %d;" % (len(global_fun))
#print "uint16_t l_reloc_count = %d;" % (len(local_fun))
#print "uint16_t code_count = %d;" % (len(code))
#print
#
#print "uint8_t patch_table[] = {"
#print "\t%s,\n" % (",\n\t".join([", ".join(l) for l in slice(compact_alloc_binary, 16)])) # Allocation table
#print "\t%s,\n" % (",\n\t".join([", ".join(l) for l in slice(global_fun_binary, 16)])) # Global relocation table
#print "\t%s\n};" % (",\n\t".join([", ".join(l) for l in slice(local_fun_binary, 16)])) # Local relocation table
#print
#print "struct value_addr_pair patch_table[] = {"
#print "\t%s,\n" % (",\n\t".join(compact_alloc)) # Allocation table
#print "\t%s,\n" % (",\n\t".join(global_fun)) # Global relocation table
#print "\t%s\n};" % (",\n\t".join(local_fun)) # Local relocation table
#print
#
#print "struct value_addr_pair g_syma[] = {\n\t%s\n};" % (",\n\t".join(global_sym)) # Global symbol table
#print "uint8_t g_sym[] = {\n\t%s\n};" % (",\n\t".join([", ".join(l) for l in slice(global_sym_binary, 16)]))
#print
#
#print "uint8_t code[] = {\n\t%s\n};" % (",\n\t".join([", ".join(l) for l in slice(code, 16)])) # The binary code of the loadable program
#print
# Don't need it because local_fun has the following information already
## Local symbol table
#print "uint16_t l_sym_count = %d;" % (len(local_sym))
#print "struct addr_addr_pair l_sym[] = {\n\t%s\n};" % (",\n\t".join(local_sym))
#print
binary_image = compact_global_sym_binary
binary_image.extend(["0x%02x" % (i) for i in [#len(global_sym) & 0xFF, (len(global_sym) >> 8) & 0xFF,
len(compact_alloc) & 0xFF, (len(compact_alloc) >> 8) & 0xFF,
fm_addr & 0xFF, (fm_addr >> 8) & 0xFF,
len(global_fun) & 0xFF, (len(global_fun) >> 8) & 0xFF,
len(local_fun) & 0xFF, (len(local_fun) >> 8) & 0xFF,
(len(dataSection_values_binary) / 6) & 0xFF, ((len(dataSection_values_binary) / 6) >> 8) & 0xFF,
len(code) & 0xFF, (len(code) >> 8) & 0xFF]])
#binary_image.extend(global_sym_binary)
binary_image.extend(compact_alloc_binary)
binary_image.extend(global_fun_binary)
binary_image.extend(local_fun_binary)
binary_image.extend(dataSection_values_binary)
binary_image.extend(code)
#print len(code)
f = open(args[2], 'wb')
for i in binary_image:
f.write(struct.pack("B", int(i, 16)))
if array_opt:
print "uint8_t code[] = {\n\t%s\n};" % (",\n\t".join([", ".join(l) for l in slice(binary_image, 16)]))
|