/usr/share/xscreensaver/config/geodesic.xml is in xscreensaver-gl 5.34-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | <?xml version="1.0" encoding="ISO-8859-1"?>
<screensaver name="geodesic" _label="Geodesic" gl="yes">
<command arg="-root"/>
<video href="http://www.youtube.com/watch?v=qulzooBLIcU"/>
<hgroup>
<vgroup>
<select id="object">
<option id="mesh" _label="Mesh faces"/>
<option id="solid" _label="Solid faces" arg-set="-mode solid"/>
<option id="stellated" _label="Stellated faces" arg-set="-mode stellated"/>
<option id="stellated2" _label="Inverse Stellated" arg-set="-mode stellated2"/>
<option id="wire" _label="Wireframe" arg-set="-mode wire"/>
<option id="random" _label="Random face style" arg-set="-mode random"/>
</select>
<boolean id="wander" _label="Wander" arg-unset="-no-wander"/>
<boolean id="spin" _label="Spin" arg-unset="-no-spin"/>
<boolean id="showfps" _label="Show frame rate" arg-set="-fps"/>
</vgroup>
<vgroup>
<number id="delay" type="slider" arg="-delay %"
_label="Frame rate" _low-label="Low" _high-label="High"
low="0" high="100000" default="30000"
convert="invert"/>
<number id="speed" type="slider" arg="-speed %"
_label="Animation speed" _low-label="Slow" _high-label="Fast"
low="0.05" high="10.0" default="1.0"/>
<number id="count" type="slider" arg="-count %"
_label="Depth" _low-label="1" _high-label="8"
low="1" high="8" default="4"/>
</vgroup>
</hgroup>
<xscreensaver-updater />
<_description>
A mesh geodesic sphere of increasing and decreasing complexity.
A geodesic sphere is an icosohedron whose equilateral faces are
sub-divided into non-equilateral triangles to more closely approximate
a sphere.
The animation shows the equilateral triangles subdivided into four
coplanar equilateral triangles; and then inflated outward, causing the
sub-triangles to no longer be equilateral, but to more closely
approximate the surface of a sphere.
https://en.wikipedia.org/wiki/Geodesic_dome
https://en.wikipedia.org/wiki/Buckminster_Fuller
Written by Jamie Zawinski; 2013.
</_description>
</screensaver>
|