/usr/include/Yap/absmi.h is in yap 6.2.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 | /*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: absmi.c *
* Last rev: *
* mods: *
* comments: Portable abstract machine interpreter includes *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif /* SCCS */
#if NATIVE_EXECUTION
/* just a stub */
#else
#define EXEC_NATIVE(X)
#define MAX_INVOCATION 1024
#define Yapc_Compile(P) 0
#endif
/***************************************************************
* Macros for register manipulation *
***************************************************************/
/*
* Machine and compiler dependent definitions
*/
#ifdef __GNUC__
#ifdef hppa
#define SHADOW_P 1
#define SHADOW_Y 1
#define SHADOW_REGS 1
#define USE_PREFETCH 1
#endif
#ifdef __alpha
#define SHADOW_P 1
#define SHADOW_Y 1
#define SHADOW_REGS 1
#define USE_PREFETCH 1
#endif
#ifdef mips
#define SHADOW_P 1
#define SHADOW_Y 1
#define SHADOW_REGS 1
#define USE_PREFETCH 1
#endif
#if defined(_POWER) || defined(__POWERPC__)
#define SHADOW_P 1
#define SHADOW_REGS 1
#define USE_PREFETCH 1
#endif
#ifdef i386
#define Y_IN_MEM 1
#define S_IN_MEM 1
#define TR_IN_MEM 1
#define HAVE_FEW_REGS 1
#define LIMITED_PREFETCH 1
#ifdef BP_FREE
/***************************************************************
* Use bp as PREG for X86 machines *
***************************************************************/
#if defined(IN_ABSMI_C)
register struct yami* P1REG asm ("bp"); /* can't use yamop before Yap.h */
#define PREG P1REG
#endif
#define NEEDS_TO_SET_PC 1
#endif /* BP_FREE */
#endif /* i386 */
#ifdef sparc
#define SHADOW_P 1
#ifdef BP_FREE
#undef BP_FREE
#endif
#define S_IN_MEM 1
#define Y_IN_MEM 1
#define TR_IN_MEM 1
#endif /* sparc_ */
#ifdef __x86_64__
#define SHADOW_P 1
#ifdef BP_FREE
#undef BP_FREE
#endif
#define SHADOW_REGS 1
#define SHADOW_S 1
//#define SHADOW_Y 1
#define S_IN_MEM 1
#define Y_IN_MEM 1
#define TR_IN_MEM 1
#define USE_PREFETCH 1
#endif /* __x86_64__ */
#else /* other compilers */
#define S_IN_MEM 1
/* This works for xlc under AIX 3.2.5 */
#ifdef _IBMR2
#define SHADOW_P 1
#define SHADOW_REGS 1
#define SHADOW_S 1
#endif
#ifdef i386
#define Y_IN_MEM 1
#define S_IN_MEM 1
#define TR_IN_MEM 1
#define HAVE_FEW_REGS 1
#endif
#ifdef mips
#define SHADOW_P 1
#define SHADOW_Y 1
#define SHADOW_S 1
#define SHADOW_CP 1
#define SHADOW_HB 1
#define USE_PREFETCH 1
#endif
#ifdef _HPUX_SOURCE
#define SHADOW_P 1
#define SHADOW_Y 1
#define SHADOW_S 1
#define SHADOW_CP 1
#define SHADOW_HB 1
#define USE_PREFETCH 1
#endif
#endif /* __GNUC__ */
#include "Yap.h"
#include "clause.h"
#include "eval.h"
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef YAPOR
#include "or.macros.h"
#endif /* YAPOR */
#ifdef USE_SYSTEM_MALLOC
#include "YapHeap.h"
#endif
#ifdef TABLING
#include "tab.macros.h"
#endif /* TABLING */
#ifdef LOW_LEVEL_TRACER
#include "tracer.h"
#endif
#ifdef DEBUG
/**********************************************************************
* *
* Debugging Auxiliary variables *
* *
**********************************************************************/
#include <stdio.h>
#endif
#if PUSH_REGS
/***************************************************************
* Trick to copy REGS into absmi local environment *
***************************************************************/
/* regp is a global variable */
inline EXTERN void
init_absmi_regs(REGSTORE * absmi_regs)
{
memcpy(absmi_regs, Yap_regp, sizeof(REGSTORE));
}
inline EXTERN void
restore_absmi_regs(REGSTORE * old_regs)
{
memcpy(old_regs, Yap_regp, sizeof(REGSTORE));
#ifdef THREADS
pthread_setspecific(Yap_yaamregs_key, (void *)old_regs);
MY_ThreadHandle.current_yaam_regs = old_regs;
#else
Yap_regp = old_regs;
#endif
}
#endif /* PUSH_REGS */
/*****************************************************************
Machine Dependent stuff
******************************************************************/
#ifdef LONG_LIVED_REGISTERS
#define BEGP(TMP)
#define ENDP(TMP)
#define BEGD(TMP)
#define ENDD(TMP)
#else
#define BEGP(TMP) { register CELL *TMP
#define ENDP(TMP) }
#define BEGD(TMP) { register CELL TMP
#define ENDD(TMP) }
#endif /* LONG_LIVED_REGISTERS */
#define BEGCHO(TMP) { register choiceptr TMP
#define ENDCHO(TMP) }
/***************************************************************
* YREG is usually, but not always, a register. This affects *
* choicepoints *
***************************************************************/
#if Y_IN_MEM
#define CACHE_Y(A) { register CELL *S_YREG = ((CELL *)(A))
#define ENDCACHE_Y() YREG = S_YREG; }
#define B_YREG ((choiceptr)(S_YREG))
#else
#define S_YREG (YREG)
#define B_YREG ((choiceptr)(YREG))
#define CACHE_Y(A) { YREG = ((CELL *)(A))
#define ENDCACHE_Y() }
#endif
#if Y_IN_MEM
#define CACHE_Y_AS_ENV(A) { register CELL *ENV_YREG = (A)
#define WRITEBACK_Y_AS_ENV() YREG = ENV_YREG
#define ENDCACHE_Y_AS_ENV() }
#define saveregs_and_ycache() YREG = ENV_YREG; saveregs()
#define setregs_and_ycache() ENV_YREG = YREG; setregs()
#else
#define ENV_YREG (YREG)
#define WRITEBACK_Y_AS_ENV()
#define CACHE_Y_AS_ENV(A) { YREG = (A)
#define ENDCACHE_Y_AS_ENV() }
#define saveregs_and_ycache() saveregs()
#define setregs_and_ycache() setregs()
#endif
#if S_IN_MEM
#define CACHE_A1()
#define CACHED_A1() ARG1
#else
#define CACHE_A1() (SREG = (CELL *)ARG1)
#define CACHED_A1() ((CELL)SREG)
#endif /* S_IN_MEM */
/***************************************************************
* TR is usually, but not always, a register. This affects *
* backtracking *
***************************************************************/
#define CACHE_TR(A) { register tr_fr_ptr S_TR = (A)
#define RESTORE_TR() TR = S_TR
#define ENDCACHE_TR() }
/***************************************************************
* S is usually, but not always, a register (X86 machines). *
* This affects unification instructions *
***************************************************************/
#if S_IN_MEM
/* jump through hoops because idiotic gcc will go and read S from
memory every time it uses S :-( */
#define CACHE_S() { register CELL * S_SREG;
#define ENDCACHE_S() }
#define READ_IN_S() S_SREG = SREG
#else
/* do nothing if you are on a decent machine */
#define CACHE_S() {
#define ENDCACHE_S() }
#define READ_IN_S()
#define S_SREG SREG
#endif
#define WRITEBACK_S(X) SREG = (X)
/*****************************************************************
End of Machine Dependent stuff
******************************************************************/
/*****************************************************************
Prefetch is a technique to obtain the place to jump to before actually
executing instructions. It can speed up some machines, by having the
next opcode in place before it is actually required for jumping.
******************************************************************/
#if USE_THREADED_CODE
#define DO_PREFETCH(TYPE) to_go = (void *)(NEXTOP(PREG,TYPE)->opc)
#define DO_PREFETCH_W(TYPE) to_go = (void *)(NEXTOP(PREG,TYPE)->u.o.opcw)
#if LIMITED_PREFETCH
#define ALWAYS_START_PREFETCH(TYPE) \
{ register void *to_go; DO_PREFETCH(TYPE)
#define ALWAYS_LOOKAHEAD(WHAT) \
{ register void *to_go = (void *)(WHAT)
#define ALWAYS_START_PREFETCH_W(TYPE) \
{ register void *to_go; DO_PREFETCH_W(TYPE)
#else
#define ALWAYS_START_PREFETCH(TYPE) {
#define ALWAYS_START_PREFETCH_W(TYPE) {
#define ALWAYS_LOOKAHEAD(WHERE) {
#endif
#ifdef USE_PREFETCH
#define START_PREFETCH(TYPE) ALWAYS_START_PREFETCH(TYPE)
#define START_PREFETCH_W(TYPE) ALWAYS_START_PREFETCH_W(TYPE)
#define INIT_PREFETCH() \
{ register void *to_go;
#define PREFETCH_OP(X) \
to_go = (void *)((X)->opc);
#else
#define START_PREFETCH(TYPE) {
#define START_PREFETCH_W(TYPE) {
#define INIT_PREFETCH() {
#define PREFETCH_OP(X)
#endif /* USE_PREFETCH */
#else /* USE_THREADED_CODE */
#define ALWAYS_START_PREFETCH(TYPE) {
#define ALWAYS_START_PREFETCH_W(TYPE) {
#define ALWAYS_LOOKAHEAD(WHERE) {
#define START_PREFETCH(TYPE) {
#define START_PREFETCH_W(TYPE) {
#define INIT_PREFETCH() {
#define PREFETCH_OP(X)
#endif /* USE_THREADED_CODE */
#define ALWAYS_END_PREFETCH() }
#define ALWAYS_END_PREFETCH_W() }
#define END_PREFETCH() }
#define END_PREFETCH_W() }
/*****************************************************************
How to jump to the next abstract machine instruction
******************************************************************/
#if USE_THREADED_CODE
#define JMP(Lab) goto *Lab
#define JMPNext() \
JMP((void *)(PREG->opc))
#define JMPNextW() \
JMP((void *)(PREG->u.o.opcw))
#if USE_THREADED_CODE && LIMITED_PREFETCH
#define ALWAYS_GONext() JMP(to_go)
#define ALWAYS_GONextW() JMP(to_go)
#else
#define ALWAYS_GONext() JMPNext()
#define ALWAYS_GONextW() JMPNextW()
#endif
#ifdef USE_PREFETCH
#define GONext() ALWAYS_GONext()
#define GONextW() ALWAYS_GONextW()
#else
#define GONext() JMPNext()
#define GONextW() JMPNextW()
#endif /* USE_PREFETCH */
#define Op(Label,Type) Label:{ START_PREFETCH(Type)
#define OpW(Label,Type) Label: { START_PREFETCH_W(Type)
#define BOp(Label,Type) Label: {
#define PBOp(Label,Type) Label: { INIT_PREFETCH()
#define OpRW(Label,Type) Label: {
#else /* do not use threaded code */
#define JMPNext() goto nextop
#define JMPNextW() goto nextop_write
#define GONext() JMPNext()
#define GONextW() JMPNextW()
#define ALWAYS_GONext() GONext()
#define ALWAYS_GONextW() GONextW()
#define Op(Label,Type) case _##Label: { START_PREFETCH(Type)
#define OpW(Label,Type) case _##Label: { START_PREFETCH_W(Type)
#define BOp(Label,Type) case _##Label: {
#define PBOp(Label,Type) case _##Label: { INIT_PREFETCH()
#define OpRW(Label,Type) case _##Label: {
#endif
#define ENDOp() END_PREFETCH() }
#define ENDOpW() END_PREFETCH_W() }
#define ENDOpRW() }
#define ENDBOp() }
#define ENDPBOp() END_PREFETCH() }
/**********************************************************************
* *
* PC manipulation *
* *
**********************************************************************/
/*
* How to set up and move a PC in a nice and disciplined way
*
*/
typedef CELL label;
/* move PC */
#define ADJ(P,x) (P)+ADJUST(sizeof(x))
/*
* Lookup PredEntry Structure
*
*/
#define pred_entry(X) ((PredEntry *)(Unsigned(X)-(CELL)(&(((PredEntry *)NULL)->StateOfPred))))
#define pred_entry_from_code(X) ((PredEntry *)(Unsigned(X)-(CELL)(&(((PredEntry *)NULL)->CodeOfPred))))
#define PredFromDefCode(X) ((PredEntry *)(Unsigned(X)-(CELL)(&(((PredEntry *)NULL)->OpcodeOfPred))))
#define PredFromExpandCode(X) ((PredEntry *)(Unsigned(X)-(CELL)(&(((PredEntry *)NULL)->cs.p_code.ExpandCode))))
#define PredCode(X) pred_entry(X)->CodeOfPred
#define PredOpCode(X) pred_entry(X)->OpcodeOfPred
#define TruePredCode(X) pred_entry(X)->TrueCodeOfPred
#define PredFunctor(X) pred_entry(X)->FunctorOfPred
#define PredArity(X) pred_entry(X)->ArityOfPE
#define Module(X) pred_entry(X)->ModuleOfPred
#define FlagOff(Mask,w) !(Mask&w)
#define FlagOn(Mask,w) (Mask&w)
#define ResetFlag(Mask,w) w &= ~Mask
#define SetFlag(Mask,w) w |= Mask
/**********************************************************************
* *
* X register access *
* *
**********************************************************************/
#if PRECOMPUTE_REGADDRESS
#define XREG(I) (*(CELL *)(I))
#else
#define XREG(I) XREGS[I]
#endif /* PRECOMPUTE_REGADDRESS */
/* The Unification Stack is the Auxiliary stack */
#define SP0 ((CELL *)AuxTop)
#define SP AuxSp
/**********************************************************************
* *
* RWREG Manipulatio *
* *
**********************************************************************/
#define READ_MODE 1
#define WRITE_MODE 0
/**********************************************************************
* *
*Setting Temporary Copies of Often Used WAM registers for efficiency *
* *
**********************************************************************/
#ifdef SHADOW_P
#define NEEDS_TO_SET_PC 1
#endif
/*
* First, the PC
*/
#ifdef NEEDS_TO_SET_PC
#define set_pc() PREG = P
#define save_pc() P = PREG
#else
#define set_pc()
#define save_pc()
#define PREG (P)
#endif
/*
* Next, Y
*/
#ifdef SHADOW_Y
#define set_y() YREG = YENV
#define save_y() YENV = YREG
#else
#define set_y()
#define save_y()
#define YREG YENV
#endif
/*
* Next, CP
*/
#ifdef SHADOW_CP
#define set_cp() CPREG = CP
#define save_cp() CP = CPREG
#else
#define set_cp()
#define save_cp()
#define CPREG CP
#endif
/* Say which registers must be saved at register entry and register
* exit */
#define setregs() \
set_hb(); \
set_cp(); \
set_pc(); \
set_y()
#define saveregs() \
save_hb(); \
save_cp(); \
save_pc(); \
save_y()
#if BP_FREE
/* if we are using BP as a local register, we must save it whenever we leave absmi.c */
#define always_save_pc() save_pc()
#define always_set_pc() set_pc()
#else
#define always_save_pc()
#define always_set_pc()
#endif /* BP_FREE */
/************************************************************
Macros to check the limits of stacks
*************************************************************/
#if HAVE_SIGSEGV
/* for the moment I don't know how to handle trail overflows
in a pure Windows environment
*/
#if !defined(_MSC_VER) && !defined(__MINGW32__) && !defined(THREADS) && !defined(YAPOR) && !defined(USE_SYSTEM_MALLOC) && !USE_DL_MALLOC
#define OS_HANDLES_TR_OVERFLOW 1
#endif
#endif
#ifdef OS_HANDLES_TR_OVERFLOW
#define check_trail(x)
#define check_trail_in_indexing(x)
#else
#define check_trail(x) if (Unsigned(Yap_TrailTop) - Unsigned(x) < MinTrailGap) \
goto notrailleft
#define check_trail_in_indexing(x) if (Unsigned(Yap_TrailTop) - Unsigned(x) < MinTrailGap) \
goto notrailleft_from_index
#endif
#if (defined(SBA) && defined(YAPOR)) || defined(TABLING)
#define check_stack(Label, GLOB) \
if ( (Int)(Unsigned(YOUNGEST_CP((choiceptr)ENV_YREG,B_FZ)) - Unsigned(YOUNGEST_H(H_FZ,GLOB))) < CreepFlag ) goto Label
#else
#define check_stack(Label, GLOB) \
if ( (Int)(Unsigned(ENV_YREG) - Unsigned(GLOB)) < CreepFlag ) goto Label
#endif /* SBA && YAPOR */
/***************************************************************
* Macros for choice point manipulation *
***************************************************************/
/***************************************************************
* Store variable number of arguments in a choice point *
***************************************************************/
/***
pt1 points at the new choice point,
pt0 points at XREGS[i]
d0 is a counter
The macro just pushes the arguments one by one to the local stack.
***/
#define store_args(arity) \
BEGP(pt0); \
pt0 = XREGS+(arity); \
while ( pt0 > XREGS ) \
{ register CELL x = pt0[0]; \
S_YREG = S_YREG-1; \
--pt0; \
(S_YREG)[0] = x; \
} \
ENDP(pt0)
#define store_at_least_one_arg(arity) \
BEGP(pt0); \
pt0 = XREGS+(arity); \
do { register CELL x = pt0[0]; \
S_YREG = (S_YREG)-1; \
--pt0; \
(S_YREG)[0] = x; \
} \
while ( pt0 > XREGS ); \
ENDP(pt0)
#if LOW_LEVEL_TRACER
#define COUNT_CPS() Yap_total_choicepoints++
#else
#define COUNT_CPS()
#endif
/***************************************************************
* Do the bulk of work in creating a choice-point *
* AP: alternative pointer *
***************************************************************/
/*
* The macro just sets pt1 to point to the base of the choicepoint
* and then fills in all the necessary fields
*/
#ifdef DEPTH_LIMIT
#define store_yaam_reg_cpdepth(CPTR) (CPTR)->cp_depth = DEPTH
#else
#define store_yaam_reg_cpdepth(CPTR)
#endif
#define store_yaam_regs(AP,I) \
{ /* Jump to CP_BASE */ \
COUNT_CPS(); \
S_YREG = (CELL *)((choiceptr)((S_YREG)-(I))-1); \
/* Save Information */ \
HBREG = H; \
B_YREG->cp_tr = TR; \
B_YREG->cp_h = H; \
B_YREG->cp_b = B; \
store_yaam_reg_cpdepth(B_YREG); \
B_YREG->cp_cp = CPREG; \
B_YREG->cp_ap = AP; \
B_YREG->cp_env= ENV; \
}
#define store_yaam_regs_for_either(AP,d0) \
COUNT_CPS(); \
pt1 --; /* Jump to CP_BASE */ \
/* Save Information */ \
HBREG = H; \
pt1->cp_tr = TR; \
pt1->cp_h = H; \
pt1->cp_b = B; \
store_yaam_reg_cpdepth(pt1); \
pt1->cp_cp = d0; \
pt1->cp_ap = AP; \
pt1->cp_env = ENV;
/***************************************************************
* Place B as the new place to cut to *
***************************************************************/
#define set_cut(E,B) (E)[E_CB] = (CELL)(B)
/***************************************************************
* Restore WAM registers from a choice point *
***************************************************************/
#ifdef DEPTH_LIMIT
#define restore_yaam_reg_cpdepth(CPTR) DEPTH = (CPTR)->cp_depth
#else
#define restore_yaam_reg_cpdepth(CPTR)
#endif
#ifdef YAPOR
#define YAPOR_update_alternative(CUR_ALT, NEW_ALT) \
if (SCH_top_shared_cp(B)) { \
SCH_new_alternative(CUR_ALT, NEW_ALT); \
} else
#else
#define YAPOR_update_alternative(CUR_ALT, NEW_ALT)
#endif /* YAPOR */
#if defined(FROZEN_STACKS) && !defined(BFZ_TRAIL_SCHEME)
#define SET_BB(V) BBREG = (V)
#else
#define SET_BB(V)
#endif /* FROZEN_STACKS && !BFZ_TRAIL_SCHEME */
#ifdef FROZEN_STACKS
#ifdef SBA
#define PROTECT_FROZEN_H(CPTR) \
((Unsigned((Int)((CPTR)->cp_h)-(Int)(H_FZ)) < \
Unsigned((Int)(B_FZ)-(Int)(H_FZ))) ? \
(CPTR)->cp_h : H_FZ)
#define PROTECT_FROZEN_B(CPTR) \
((Unsigned((Int)(CPTR)-(Int)(H_FZ)) < \
Unsigned((Int)(B_FZ)-(Int)(H_FZ))) ? \
(CPTR) : B_FZ)
/*
#define PROTECT_FROZEN_H(CPTR) ((CPTR)->cp_h > H_FZ && (CPTR)->cp_h < (CELL *)B_FZ ? (CPTR)->cp_h : H_FZ )
#define PROTECT_FROZEN_B(CPTR) ((CPTR) < B_FZ && (CPTR) > (choiceptr)H_FZ ? (CPTR) : B_FZ )
*/
#else /* TABLING */
#define PROTECT_FROZEN_B(CPTR) (YOUNGER_CP(CPTR, B_FZ) ? CPTR : B_FZ)
#define PROTECT_FROZEN_H(CPTR) (((CPTR)->cp_h > H_FZ) ? (CPTR)->cp_h : H_FZ)
#endif /* SBA */
#else
#define PROTECT_FROZEN_B(CPTR) (CPTR)
#define PROTECT_FROZEN_H(CPTR) (CPTR)->cp_h
#endif /* FROZEN_STACKS */
#define restore_yaam_regs(AP) \
{ register CELL *x1 = B_YREG->cp_env; \
register yamop *x2; \
H = HBREG = PROTECT_FROZEN_H(B_YREG); \
restore_yaam_reg_cpdepth(B_YREG); \
CPREG = B_YREG->cp_cp; \
/* AP may depend on H */ \
x2 = (yamop *)AP; \
ENV = x1; \
YAPOR_update_alternative(PREG, x2) \
B_YREG->cp_ap = x2; \
}
/***************************************************************
* Restore variable number of arguments from a choice point *
***************************************************************/
#define restore_args(Nargs) \
BEGD(d0); \
d0 = Nargs; \
BEGP(pt0); \
BEGP(pt1); \
pt1 = (CELL *)(B_YREG+1)+d0; \
pt0 = XREGS+1+d0; \
while (pt0 > XREGS +1 ) \
{ register CELL x = pt1[-1]; \
--pt0; \
--pt1; \
*pt0 = x; \
} \
ENDP(pt1); \
ENDP(pt0); \
ENDD(d0)
#define restore_at_least_one_arg(Nargs) \
BEGD(d0); \
d0 = Nargs; \
BEGP(pt0); \
BEGP(pt1); \
pt1 = (CELL *)(B_YREG+1)+d0; \
pt0 = XREGS+1+d0; \
do { register CELL x = pt1[-1]; \
--pt0; \
--pt1; \
*pt0 = x; \
} \
while (pt0 > XREGS +1 ); \
ENDP(pt1); \
ENDP(pt0); \
ENDD(d0)
/***************************************************************
* Execute trust to release YAAM registers and pop choice point *
***************************************************************/
#ifdef DEPTH_LIMIT
#define pop_yaam_reg_cpdepth(CPTR) DEPTH = (CPTR)->cp_depth
#else
#define pop_yaam_reg_cpdepth(CPTR)
#endif
#ifdef TABLING
#define TABLING_close_alt(CPTR) (CPTR)->cp_ap = NULL
#else
#define TABLING_close_alt(CPTR)
#endif /* TABLING */
#define pop_yaam_regs() \
{ \
H = PROTECT_FROZEN_H(B_YREG); \
B = B_YREG->cp_b; \
pop_yaam_reg_cpdepth(B_YREG); \
CPREG = B_YREG->cp_cp; \
ENV = B_YREG->cp_env; \
TABLING_close_alt(B_YREG); \
HBREG = PROTECT_FROZEN_H(B); \
}
#define pop_args(NArgs) \
BEGD(d0); \
d0 = (NArgs); \
BEGP(pt0); \
BEGP(pt1); \
S_YREG = (CELL *)(B_YREG+1); \
pt0 = XREGS + 1 ; \
pt1 = S_YREG ; \
while (pt0 < XREGS+1+d0) \
{ register CELL x = pt1[0]; \
pt1++; \
pt0++; \
pt0[-1] = x; \
} \
S_YREG = pt1; \
ENDP(pt1); \
ENDP(pt0); \
ENDD(d0);
#define pop_at_least_one_arg(NArgs) \
BEGD(d0); \
d0 = (NArgs); \
BEGP(pt0); \
BEGP(pt1); \
pt1 = (CELL *)(B_YREG+1); \
pt0 = XREGS + 1 ; \
do { register CELL x = pt1[0]; \
pt1++; \
pt0++; \
pt0[-1] = x; \
} \
while (pt0 < XREGS+1+d0); \
S_YREG = pt1; \
ENDP(pt1); \
ENDP(pt0); \
ENDD(d0);
/**********************************************************************
* *
* failure and backtracking *
* *
**********************************************************************/
/* Failure can be called from two routines.
*
* If from within the emulator, we should jump to the label fail.
*
* If from within the complex-term unification routine, we should jump
* to the label "cufail".
*
*/
#define FAIL() goto fail
/**********************************************************************
* *
* unification routines *
* *
**********************************************************************/
#ifdef COROUTINING
#define UnifyCells(a, b, l1, l2) \
if((a) > (b)) { \
if ((a)<=H) { BIND_GLOBAL((a),(CELL)(b),l1); } \
else if ((b)<= H) { Bind_Local((a),(CELL)(b)); goto l1;} \
else { Bind_Local((b),(CELL) (a)); goto l1;} \
} else if((a) < (b)){ \
if((b) <= H) { BIND_GLOBAL2((b),(CELL) (a),l2,l1); } \
else if ((a) <= H) { Bind_Local((b),(CELL) (a)); goto l1;} \
else { Bind_Local((a),(CELL) (b)); goto l1;} \
} else goto l1;
/* I know (a) <= H */
#define UnifyGlobalRegCells(a, b, l1, l2) \
if((a) > (b)) { \
BIND_GLOBAL((a),(CELL)(b),l1); \
} else if((a) < (b)){ \
if((b) <= H) { BIND_GLOBAL2((b),(CELL) (a),l2,l1); } \
Bind_Local((b),(CELL) (a)); \
goto l1; \
} else goto l1;
#else
#define UnifyCells(a, b, l1, l2) \
if((a) > (b)) { \
if ((a)<=H) { BIND_GLOBAL((a),(CELL)(b),l1); } \
else if ((b)<= H) { Bind_Local((a),(CELL)(b)); } \
else { Bind_Local((b),(CELL) (a)); } \
} else if((a) < (b)){ \
if((b) <= H) { BIND_GLOBAL2((b),(CELL) (a),l2,l1); } \
else if ((a) <= H) { Bind_Local((b),(CELL) (a)); } \
else { Bind_Local((a),(CELL) (b)); } \
}
/* I know (a) <= H */
#define UnifyGlobalRegCells(a, b, l1, l2) \
if((a) > (b)) { \
BIND_GLOBAL((a),(CELL)(b),l1); \
} else if((a) < (b)){ \
if((b) <= H) { BIND_GLOBAL2((b),(CELL) (a),l2,l1); } \
Bind_Local((b),(CELL) (a)); \
}
#endif
#define UnifyGlobalCells(a, b) \
if((a) > (b)) { \
BIND_GLOBALCELL((a),(CELL)(b)); \
} else if((a) < (b)){ \
BIND_GLOBALCELL((b),(CELL) (a)); \
}
/* unify two complex terms.
*
* I use two stacks: one keeps the visited terms, and the other keeps the
* terms to visit.
*
* The terms-to-visit stack is used to implement traditional
* recursion. The visited-terms-stack is used to link structures already
* visited and allows unification of infinite terms
*
*/
#ifdef RATIONAL_TREES
#define UNWIND_CUNIF() \
while (visited < AuxSp) { \
pt1 = (CELL *)visited[0]; \
*pt1 = visited[1]; \
visited += 2; \
}
#else
#define UNWIND_CUNIF()
#endif
#define UnifyBound_TEST_ATTACHED(f,d0,pt0,d1) \
if (IsExtensionFunctor(f)) { \
if (unify_extension(f, d0, RepAppl(d0), d1)) \
{ GONext(); } \
else \
{ FAIL(); } \
}
#define UnifyBound(d0,d1) \
if (d0 == d1) GONext(); \
if (IsPairTerm(d0)) { \
register CELL *ipt0, *ipt1; \
if (!IsPairTerm(d1)) { FAIL(); } \
ipt0 = RepPair(d0); \
ipt1 = RepPair(d1); \
save_hb(); \
always_save_pc(); \
if (IUnify_complex(ipt0-1,ipt0+1,ipt1-1)) {always_set_pc(); GONext();}\
else { FAIL(); } \
} else if (IsApplTerm(d0)) { \
register CELL *ipt0, *ipt1; \
register Functor f; \
if (!IsApplTerm(d1)) { FAIL(); } \
ipt0 = RepAppl(d0); \
ipt1 = RepAppl(d1); \
f = (Functor)*ipt0; \
if (f != (Functor)*ipt1) { FAIL(); } \
UnifyBound_TEST_ATTACHED(f,d0,ipt0,d1); \
d0 = ArityOfFunctor(f); \
always_save_pc(); \
save_hb(); \
if (IUnify_complex(ipt0, ipt0+d0, ipt1)) {always_set_pc(); GONext();} \
else { FAIL(); } \
} \
else { FAIL(); }
/*
* Next, HB
*/
#ifdef SHADOW_HB
#undef HBREG
#define set_hb() HBREG = HB
#define save_hb() HB = HBREG
#else
#define set_hb()
#define save_hb()
#endif
typedef struct unif_record {
CELL *ptr;
Term old;
} unif_record;
typedef struct v_record {
CELL *start0;
CELL *end0;
CELL *start1;
Term old;
} v_record;
#if defined(IN_ABSMI_C) || defined(IN_UNIFY_C)
static int
IUnify_complex(CELL *pt0, CELL *pt0_end, CELL *pt1)
{
#ifdef THREADS
#undef Yap_REGS
register REGSTORE *regp = Yap_regp;
#define Yap_REGS (*regp)
#elif defined(SHADOW_REGS)
#if defined(B) || defined(TR)
register REGSTORE *regp = &Yap_REGS;
#define Yap_REGS (*regp)
#endif /* defined(B) || defined(TR) || defined(HB) */
#endif
#ifdef SHADOW_HB
register CELL *HBREG = HB;
#endif /* SHADOW_HB */
struct unif_record *unif = (struct unif_record *)AuxBase;
struct v_record *to_visit = (struct v_record *)AuxSp;
#define unif_base ((struct unif_record *)AuxBase)
#define to_visit_base ((struct v_record *)AuxSp)
loop:
while (pt0 < pt0_end) {
register CELL *ptd0 = pt0+1;
register CELL d0;
++pt1;
pt0 = ptd0;
d0 = *ptd0;
deref_head(d0, unify_comp_unk);
unify_comp_nvar:
{
register CELL *ptd1 = pt1;
register CELL d1 = *ptd1;
deref_head(d1, unify_comp_nvar_unk);
unify_comp_nvar_nvar:
if (d0 == d1)
continue;
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
goto cufail;
}
/* now link the two structures so that no one else will */
/* come here */
/* store the terms to visit */
if (RATIONAL_TREES || pt0 < pt0_end) {
to_visit --;
#ifdef RATIONAL_TREES
unif++;
#endif
if ((void *)to_visit < (void *)unif) {
CELL **urec = (CELL **)unif;
to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec);
unif = (struct unif_record *)urec;
}
to_visit->start0 = pt0;
to_visit->end0 = pt0_end;
to_visit->start1 = pt1;
#ifdef RATIONAL_TREES
unif[-1].old = *pt0;
unif[-1].ptr = pt0;
*pt0 = d1;
#endif
}
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
pt1 = RepPair(d1) - 1;
continue;
}
if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
if (!IsApplTerm(d1)) {
goto cufail;
}
/* store the terms to visit */
ap2 = RepAppl(d0);
ap3 = RepAppl(d1);
f = (Functor) (*ap2);
/* compare functors */
if (f != (Functor) *ap3)
goto cufail;
if (IsExtensionFunctor(f)) {
if (unify_extension(f, d0, ap2, d1))
continue;
goto cufail;
}
/* now link the two structures so that no one else will */
/* come here */
/* store the terms to visit */
if (RATIONAL_TREES || pt0 < pt0_end) {
to_visit --;
#ifdef RATIONAL_TREES
unif++;
#endif
if ((void *)to_visit < (void *)unif) {
CELL **urec = (CELL **)unif;
to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec);
unif = (struct unif_record *)urec;
}
to_visit->start0 = pt0;
to_visit->end0 = pt0_end;
to_visit->start1 = pt1;
#ifdef RATIONAL_TREES
unif[-1].old = *pt0;
unif[-1].ptr = pt0;
*pt0 = d1;
#endif
}
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
}
goto cufail;
derefa_body(d1, ptd1, unify_comp_nvar_unk, unify_comp_nvar_nvar);
/* d1 and pt2 have the unbound value, whereas d0 is bound */
BIND_GLOBALCELL(ptd1, d0);
}
derefa_body(d0, ptd0, unify_comp_unk, unify_comp_nvar);
/* first arg var */
{
register CELL d1;
register CELL *ptd1;
ptd1 = pt1;
d1 = ptd1[0];
/* pt2 is unbound */
deref_head(d1, unify_comp_var_unk);
unify_comp_var_nvar:
/* pt2 is unbound and d1 is bound */
BIND_GLOBALCELL(ptd0, d1);
derefa_body(d1, ptd1, unify_comp_var_unk, unify_comp_var_nvar);
/* ptd0 and ptd1 are unbound */
UnifyGlobalCells(ptd0, ptd1);
}
}
/* Do we still have compound terms to visit */
if (to_visit < to_visit_base) {
pt0 = to_visit->start0;
pt0_end = to_visit->end0;
pt1 = to_visit->start1;
to_visit++;
goto loop;
}
#ifdef RATIONAL_TREES
/* restore bindigs */
while (unif-- != unif_base) {
CELL *pt0;
pt0 = unif->ptr;
*pt0 = unif->old;
}
#endif
return TRUE;
cufail:
#ifdef RATIONAL_TREES
/* restore bindigs */
while (unif-- != unif_base) {
CELL *pt0;
pt0 = unif->ptr;
*pt0 = unif->old;
}
#endif
return FALSE;
#ifdef THREADS
#undef Yap_REGS
#define Yap_REGS (*Yap_regp)
#elif defined(SHADOW_REGS)
#if defined(B) || defined(TR)
#undef Yap_REGS
#endif /* defined(B) || defined(TR) */
#endif
}
/* don't pollute name space */
#undef to_visit_base
#undef unif_base
#endif
#if defined(IN_ABSMI_C) || defined(IN_INLINES_C)
static int
iequ_complex(register CELL *pt0, register CELL *pt0_end,
register CELL *pt1
)
{
#ifdef THREADS
#undef Yap_REGS
register REGSTORE *regp = Yap_regp;
#define Yap_REGS (*regp)
#elif defined(SHADOW_REGS)
#if defined(B) || defined(TR)
register REGSTORE *regp = &Yap_REGS;
#define Yap_REGS (*regp)
#endif /* defined(B) || defined(TR) || defined(HB) */
#endif
#ifdef SHADOW_HB
register CELL *HBREG = HB;
#endif /* SHADOW_HB */
struct unif_record *unif = (struct unif_record *)AuxBase;
struct v_record *to_visit = (struct v_record *)AuxSp;
#define unif_base ((struct unif_record *)AuxBase)
#define to_visit_base ((struct v_record *)AuxSp)
loop:
while (pt0 < pt0_end) {
register CELL *ptd0 = pt0+1;
register CELL d0;
++pt1;
pt0 = ptd0;
d0 = *ptd0;
deref_head(d0, iequ_comp_unk);
iequ_comp_nvar:
{
register CELL *ptd1 = pt1;
register CELL d1 = *ptd1;
deref_head(d1, iequ_comp_nvar_unk);
iequ_comp_nvar_nvar:
if (d0 == d1)
continue;
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
goto cufail;
}
/* now link the two structures so that no one else will */
/* come here */
/* store the terms to visit */
if (RATIONAL_TREES || pt0 < pt0_end) {
to_visit --;
#ifdef RATIONAL_TREES
unif++;
#endif
if ((void *)to_visit < (void *)unif) {
CELL **urec = (CELL **)unif;
to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec);
unif = (struct unif_record *)urec;
}
to_visit->start0 = pt0;
to_visit->end0 = pt0_end;
to_visit->start1 = pt1;
#ifdef RATIONAL_TREES
unif[-1].old = *pt0;
unif[-1].ptr = pt0;
*pt0 = d1;
#endif
}
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
pt1 = RepPair(d1) - 1;
continue;
}
if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
if (!IsApplTerm(d1)) {
goto cufail;
}
/* store the terms to visit */
ap2 = RepAppl(d0);
ap3 = RepAppl(d1);
f = (Functor) (*ap2);
/* compare functors */
if (f != (Functor) *ap3)
goto cufail;
if (IsExtensionFunctor(f)) {
if (unify_extension(f, d0, ap2, d1))
continue;
goto cufail;
}
/* now link the two structures so that no one else will */
/* come here */
/* store the terms to visit */
if (RATIONAL_TREES || pt0 < pt0_end) {
to_visit --;
#ifdef RATIONAL_TREES
unif++;
#endif
if ((void *)to_visit < (void *)unif) {
CELL **urec = (CELL **)unif;
to_visit = (struct v_record *)Yap_shift_visit((CELL **)to_visit, &urec);
unif = (struct unif_record *)urec;
}
to_visit->start0 = pt0;
to_visit->end0 = pt0_end;
to_visit->start1 = pt1;
#ifdef RATIONAL_TREES
unif[-1].old = *pt0;
unif[-1].ptr = pt0;
*pt0 = d1;
#endif
}
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
}
goto cufail;
derefa_body(d1, ptd1, iequ_comp_nvar_unk, iequ_comp_nvar_nvar);
/* d1 and pt2 have the unbound value, whereas d0 is bound */
goto cufail;
}
derefa_body(d0, ptd0, iequ_comp_unk, iequ_comp_nvar);
/* first arg var */
{
register CELL d1;
register CELL *ptd1;
ptd1 = pt1;
d1 = ptd1[0];
/* pt2 is unbound */
deref_head(d1, iequ_comp_var_unk);
iequ_comp_var_nvar:
/* pt2 is unbound and d1 is bound */
goto cufail;
derefa_body(d1, ptd1, iequ_comp_var_unk, iequ_comp_var_nvar);
/* pt2 and pt3 are unbound */
if (ptd0 == ptd1)
continue;
goto cufail;
}
}
/* Do we still have compound terms to visit */
if (to_visit < to_visit_base) {
pt0 = to_visit->start0;
pt0_end = to_visit->end0;
pt1 = to_visit->start1;
to_visit++;
goto loop;
}
#ifdef RATIONAL_TREES
/* restore bindigs */
while (unif-- != unif_base) {
CELL *pt0;
pt0 = unif->ptr;
*pt0 = unif->old;
}
#endif
return TRUE;
cufail:
#ifdef RATIONAL_TREES
/* restore bindigs */
while (unif-- != unif_base) {
CELL *pt0;
pt0 = unif->ptr;
*pt0 = unif->old;
}
#endif
return FALSE;
#ifdef THREADS
#undef Yap_REGS
#define Yap_REGS (*Yap_regp)
#elif defined(SHADOW_REGS)
#if defined(B) || defined(TR)
#undef Yap_REGS
#endif /* defined(B) || defined(TR) */
#endif
}
#endif
static inline wamreg
Yap_regnotoreg(UInt regnbr)
{
#if PRECOMPUTE_REGADDRESS
return (wamreg)(XREGS + regnbr);
#else
#if MSHIFTOFFS
return regnbr;
#else
return CELLSIZE*regnbr;
#endif
#endif /* ALIGN_LONGS */
}
static inline UInt
Yap_regtoregno(wamreg reg)
{
#if PRECOMPUTE_REGADDRESS
return ((CELL *)reg)-XREGS;
#else
#if MSHIFTOFFS
return reg;
#else
return reg/CELLSIZE;
#endif
#endif /* ALIGN_LONGS */
}
#ifdef DEPTH_LIMIT
#define check_depth(DEPTH, ap) \
if ((DEPTH) <= MkIntTerm(1)) {/* I assume Module==0 is prolog */ \
if ((ap)->ModuleOfPred) {\
if ((DEPTH) == MkIntTerm(0))\
FAIL(); \
else (DEPTH) = RESET_DEPTH();\
} \
} else if ((ap)->ModuleOfPred)\
(DEPTH) -= MkIntConstant(2);
#else
#define check_depth(DEPTH, ap)
#endif
#if defined(THREADS) || defined(YAPOR)
#define copy_jmp_address(X) (PREG_ADDR = &(X))
#define copy_jmp_addressa(X) (PREG_ADDR = (yamop **)(X))
#else
#define copy_jmp_address(X)
#define copy_jmp_addressa(X)
#endif
|