/usr/share/Yap/clpq/nf_q.pl is in yap 6.2.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | /* $Id$
Part of CLP(Q) (Constraint Logic Programming over Rationals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2006, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
Prolog and distributed under the license details below with permission from
all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(nf_q,
[
{}/1,
nf/2,
entailed/1,
split/3,
repair/2,
nf_constant/2,
wait_linear/3,
nf2term/2
]).
:- use_module('../clpqr/geler',
[
geler/3
]).
:- use_module(bv_q,
[
log_deref/4,
solve/1,
'solve_<'/1,
'solve_=<'/1,
'solve_=\\='/1
]).
:- use_module(ineq_q,
[
ineq_one/4,
ineq_one_s_p_0/1,
ineq_one_s_n_0/1,
ineq_one_n_p_0/1,
ineq_one_n_n_0/1
]).
:- use_module(store_q,
[
add_linear_11/3,
normalize_scalar/2
]).
goal_expansion(geler(X,Y),geler(clpq,X,Y)).
% -------------------------------------------------------------------------
% {Constraint}
%
% Adds the constraint Constraint to the constraint store.
%
% First rule is to prevent binding with other rules when a variable is input
% Constraints are converted to normal form and if necessary, submitted to the linear
% equality/inequality solver (bv + ineq) or to the non-linear store (geler)
{Rel} :-
var(Rel),
!,
throw(instantiation_error({Rel},1)).
{R,Rs} :-
!,
{R},{Rs}.
{R;Rs} :-
!,
({R};{Rs}). % for entailment checking
{L < R} :-
!,
nf(L-R,Nf),
submit_lt(Nf).
{L > R} :-
!,
nf(R-L,Nf),
submit_lt(Nf).
{L =< R} :-
!,
nf(L-R,Nf),
submit_le( Nf).
{<=(L,R)} :-
!,
nf(L-R,Nf),
submit_le(Nf).
{L >= R} :-
!,
nf(R-L,Nf),
submit_le(Nf).
{L =\= R} :-
!,
nf(L-R,Nf),
submit_ne(Nf).
{L =:= R} :-
!,
nf(L-R,Nf),
submit_eq(Nf).
{L = R} :-
!,
nf(L-R,Nf),
submit_eq(Nf).
{Rel} :- throw(type_error({Rel},1,'a constraint',Rel)).
% entailed(C)
%
% s -> c = ~s v c = ~(s /\ ~c)
% where s is the store and c is the constraint for which
% we want to know whether it is entailed.
% C is negated and added to the store. If this fails, then c is entailed by s
entailed(C) :-
negate(C,Cn),
\+ {Cn}.
% negate(C,Res).
%
% Res is the negation of constraint C
% first rule is to prevent binding with other rules when a variable is input
negate(Rel,_) :-
var(Rel),
!,
throw(instantiation_error(entailed(Rel),1)).
negate((A,B),(Na;Nb)) :-
!,
negate(A,Na),
negate(B,Nb).
negate((A;B),(Na,Nb)) :-
!,
negate(A,Na),
negate(B,Nb).
negate(A<B,A>=B) :- !.
negate(A>B,A=<B) :- !.
negate(A=<B,A>B) :- !.
negate(A>=B,A<B) :- !.
negate(A=:=B,A=\=B) :- !.
negate(A=B,A=\=B) :- !.
negate(A=\=B,A=:=B) :- !.
negate(Rel,_) :- throw( type_error(entailed(Rel),1,'a constraint',Rel)).
% submit_eq(Nf)
%
% Submits the equality Nf = 0 to the constraint store, where Nf is in normal form.
% The following cases may apply:
% a) Nf = []
% b) Nf = [A]
% b1) A = k
% b2) invertible(A)
% b3) linear -> A = 0
% b4) nonlinear -> geler
% c) Nf=[A,B|Rest]
% c1) A=k
% c11) (B=c*X^+1 or B=c*X^-1), Rest=[] -> B=-k/c or B=-c/k
% c12) invertible(A,B)
% c13) linear(B|Rest)
% c14) geler
% c2) linear(Nf)
% c3) nonlinear -> geler
submit_eq([]). % trivial success: case a
submit_eq([T|Ts]) :-
submit_eq(Ts,T).
submit_eq([],A) :- submit_eq_b(A). % case b
submit_eq([B|Bs],A) :- submit_eq_c(A,B,Bs). % case c
% submit_eq_b(A)
%
% Handles case b of submit_eq/1
% case b1: A is a constant (non-zero)
submit_eq_b(v(_,[])) :-
!,
fail.
% case b2/b3: A is n*X^P => X = 0
submit_eq_b(v(_,[X^P])) :-
var(X),
P > 0,
!,
X = 0.
% case b2: non-linear is invertible: NL(X) = 0 => X - inv(NL)(0) = 0
submit_eq_b(v(_,[NL^1])) :-
nonvar(NL),
nl_invertible(NL,X,0,Inv),
!,
nf(-Inv,S),
nf_add(X,S,New),
submit_eq(New).
% case b4: A is non-linear and not invertible => submit equality to geler
submit_eq_b(Term) :-
term_variables(Term,Vs),
geler(Vs,nf_q:resubmit_eq([Term])).
% submit_eq_c(A,B,Rest)
%
% Handles case c of submit_eq/1
% case c1: A is a constant
submit_eq_c(v(I,[]),B,Rest) :-
!,
submit_eq_c1(Rest,B,I).
% case c2: A,B and Rest are linear
submit_eq_c(A,B,Rest) :- % c2
A = v(_,[X^1]),
var(X),
B = v(_,[Y^1]),
var(Y),
linear(Rest),
!,
Hom = [A,B|Rest],
% 'solve_='(Hom).
nf_length(Hom,0,Len),
log_deref(Len,Hom,[],HomD),
solve(HomD).
% case c3: A, B or Rest is non-linear => geler
submit_eq_c(A,B,Rest) :-
Norm = [A,B|Rest],
term_variables(Norm,Vs),
geler(Vs,nf_q:resubmit_eq(Norm)).
% submit_eq_c1(Rest,B,K)
%
% Handles case c1 of submit_eq/1
% case c11: k+cX^1=0 or k+cX^-1=0
submit_eq_c1([],v(K,[X^P]),I) :-
var(X),
( P = 1,
!,
X is -I rdiv K
; P = -1,
!,
X is -K rdiv I
).
% case c12: non-linear, invertible: cNL(X)^1+k=0 => inv(NL)(-k/c) = 0 ;
% cNL(X)^-1+k=0 => inv(NL)(-c/k) = 0
submit_eq_c1([],v(K,[NL^P]),I) :-
nonvar(NL),
( P = 1,
Y is -I rdiv K
; P = -1,
Y is -K rdiv I
),
nl_invertible(NL,X,Y,Inv),
!,
nf(-Inv,S),
nf_add(X,S,New),
submit_eq(New).
% case c13: linear: X + Y + Z + c = 0 =>
submit_eq_c1(Rest,B,I) :-
B = v(_,[Y^1]),
var(Y),
linear(Rest),
!,
% 'solve_='( [v(I,[]),B|Rest]).
Hom = [B|Rest],
nf_length(Hom,0,Len),
normalize_scalar(I,Nonvar),
log_deref(Len,Hom,[],HomD),
add_linear_11(Nonvar,HomD,LinD),
solve(LinD).
% case c14: other cases => geler
submit_eq_c1(Rest,B,I) :-
Norm = [v(I,[]),B|Rest],
term_variables(Norm,Vs),
geler(Vs,nf_q:resubmit_eq(Norm)).
% -----------------------------------------------------------------------
% submit_lt(Nf)
%
% Submits the inequality Nf<0 to the constraint store, where Nf is in normal form.
% 0 < 0 => fail
submit_lt([]) :- fail.
% A + B < 0
submit_lt([A|As]) :- submit_lt(As,A).
% submit_lt(As,A)
%
% Does what submit_lt/1 does where Nf = [A|As]
% v(K,P) < 0
submit_lt([],v(K,P)) :- submit_lt_b(P,K).
% A + B + Bs < 0
submit_lt([B|Bs],A) :- submit_lt_c(Bs,A,B).
% submit_lt_b(P,K)
%
% Does what submit_lt/2 does where A = [v(K,P)] and As = []
% c < 0
submit_lt_b([],I) :-
!,
I < 0.
% cX^1 < 0 : if c < 0 then X > 0, else X < 0
submit_lt_b([X^1],K) :-
var(X),
!,
( K > 0
-> ineq_one_s_p_0(X) % X is strictly negative
; ineq_one_s_n_0(X) % X is strictly positive
).
% non-linear => geler
submit_lt_b(P,K) :-
term_variables(P,Vs),
geler(Vs,nf_q:resubmit_lt([v(K,P)])).
% submit_lt_c(Bs,A,B)
%
% Does what submit_lt/2 does where As = [B|Bs].
% c + kX < 0 => kX < c
submit_lt_c([],A,B) :-
A = v(I,[]),
B = v(K,[Y^1]),
var(Y),
!,
ineq_one(strict,Y,K,I).
% linear < 0 => solve, non-linear < 0 => geler
submit_lt_c(Rest,A,B) :-
Norm = [A,B|Rest],
( linear(Norm)
-> 'solve_<'(Norm)
; term_variables(Norm,Vs),
geler(Vs,nf_q:resubmit_lt(Norm))
).
% submit_le(Nf)
%
% Submits the inequality Nf =< 0 to the constraint store, where Nf is in normal form.
% See also submit_lt/1
% 0 =< 0 => success
submit_le([]).
% A + B =< 0
submit_le([A|As]) :- submit_le(As,A).
% submit_le(As,A)
%
% See submit_lt/2. This handles less or equal.
% v(K,P) =< 0
submit_le([],v(K,P)) :- submit_le_b(P,K).
% A + B + Bs =< 0
submit_le([B|Bs],A) :- submit_le_c(Bs,A,B).
% submit_le_b(P,K)
%
% See submit_lt_b/2. This handles less or equal.
% c =< 0
submit_le_b([],I) :-
!,
I =< 0.
% cX^1 =< 0: if c < 0 then X >= 0, else X =< 0
submit_le_b([X^1],K) :-
var(X),
!,
( K > 0
-> ineq_one_n_p_0(X) % X is non-strictly negative
; ineq_one_n_n_0(X) % X is non-strictly positive
).
% cX^P =< 0 => geler
submit_le_b(P,K) :-
term_variables(P,Vs),
geler(Vs,nf_q:resubmit_le([v(K,P)])).
% submit_le_c(Bs,A,B)
%
% See submit_lt_c/3. This handles less or equal.
% c + kX^1 =< 0 => kX =< 0
submit_le_c([],A,B) :-
A = v(I,[]),
B = v(K,[Y^1]),
var(Y),
!,
ineq_one(nonstrict,Y,K,I).
% A, B & Rest are linear => solve, otherwise => geler
submit_le_c(Rest,A,B) :-
Norm = [A,B|Rest],
( linear(Norm)
-> 'solve_=<'(Norm)
; term_variables(Norm,Vs),
geler(Vs,nf_q:resubmit_le(Norm))
).
% submit_ne(Nf)
%
% Submits the inequality Nf =\= 0 to the constraint store, where Nf is in normal form.
% if Nf is a constant => check constant = 0, else if Nf is linear => solve else => geler
submit_ne(Norm1) :-
( nf_constant(Norm1,K)
-> K =\= 0
; linear(Norm1)
-> 'solve_=\\='(Norm1)
; term_variables(Norm1,Vs),
geler(Vs,nf_q:resubmit_ne(Norm1))
).
% linear(A)
%
% succeeds when A is linear: all elements are of the form v(_,[]) or v(_,[X^1])
linear([]).
linear(v(_,Ps)) :- linear_ps(Ps).
linear([A|As]) :-
linear(A),
linear(As).
% linear_ps(A)
%
% Succeeds when A = V^1 with V a variable.
% This reflects the linearity of v(_,A).
linear_ps([]).
linear_ps([V^1]) :- var(V). % excludes sin(_), ...
%
% Goal delays until Term gets linear.
% At this time, Var will be bound to the normalform of Term.
%
:- meta_predicate wait_linear( ?, ?, :).
%
wait_linear(Term,Var,Goal) :-
nf(Term,Nf),
( linear(Nf)
-> Var = Nf,
call(Goal)
; term_variables(Nf,Vars),
geler(Vars,nf_q:wait_linear_retry(Nf,Var,Goal))
).
%
% geler clients
%
resubmit_eq(N) :-
repair(N,Norm),
submit_eq(Norm).
resubmit_lt(N) :-
repair(N,Norm),
submit_lt(Norm).
resubmit_le(N) :-
repair(N,Norm),
submit_le(Norm).
resubmit_ne(N) :-
repair(N,Norm),
submit_ne(Norm).
wait_linear_retry(Nf0,Var,Goal) :-
repair(Nf0,Nf),
( linear(Nf)
-> Var = Nf,
call(Goal)
; term_variables(Nf,Vars),
geler(Vars,nf_q:wait_linear_retry(Nf,Var,Goal))
).
% -----------------------------------------------------------------------
% nl_invertible(F,X,Y,Res)
%
% Res is the evaluation of the inverse of nonlinear function F in variable X
% where X is Y
nl_invertible(sin(X),X,Y,Res) :- Res is asin(Y).
nl_invertible(cos(X),X,Y,Res) :- Res is acos(Y).
nl_invertible(tan(X),X,Y,Res) :- Res is atan(Y).
nl_invertible(exp(B,C),X,A,Res) :-
( nf_constant(B,Kb)
-> A > 0,
Kb > 0,
Kb =\= 1,
X = C, % note delayed unification
Res is rational(log(A)) rdiv rational(log(Kb))
; nf_constant(C,Kc),
A =\= 0,
Kc > 0,
X = B, % note delayed unification
Res is rational(A**(1 rdiv Kc))
).
% -----------------------------------------------------------------------
% nf(Exp,Nf)
%
% Returns in Nf, the normal form of expression Exp
%
% v(A,[B^C,D^E|...]) means A*B^C*D^E*... where A is a scalar (number)
% v(A,[]) means scalar A
% variable X => 1*X^1
nf(X,Norm) :-
var(X),
!,
Norm = [v(1,[X^1])].
nf(X,Norm) :-
number(X),
!,
nf_number(X,Norm).
nf(X,Norm) :-
rational(X),
!,
nf_number(X,Norm).
%
nf(-A,Norm) :-
!,
nf(A,An),
nf_mul_factor(v(-1,[]),An,Norm).
nf(+A,Norm) :-
!,
nf(A,Norm).
%
nf(A+B,Norm) :-
!,
nf(A,An),
nf(B,Bn),
nf_add(An,Bn,Norm).
nf(A-B,Norm) :-
!,
nf(A,An),
nf(-B,Bn),
nf_add(An,Bn,Norm).
%
nf(A*B,Norm) :-
!,
nf(A,An),
nf(B,Bn),
nf_mul(An,Bn,Norm).
nf(A/B,Norm) :-
!,
nf(A,An),
nf(B,Bn),
nf_div(Bn,An,Norm).
% non-linear function, one argument: Term = f(Arg) equals f'(Sa1) = Skel
nf(Term,Norm) :-
nonlin_1(Term,Arg,Skel,Sa1),
!,
nf(Arg,An),
nf_nonlin_1(Skel,An,Sa1,Norm).
% non-linear function, two arguments: Term = f(A1,A2) equals f'(Sa1,Sa2) = Skel
nf(Term,Norm) :-
nonlin_2(Term,A1,A2,Skel,Sa1,Sa2),
!,
nf(A1,A1n),
nf(A2,A2n),
nf_nonlin_2(Skel,A1n,A2n,Sa1,Sa2,Norm).
%
nf(Term,_) :-
throw(type_error(nf(Term,_),1,'a numeric expression',Term)).
% nf_number(N,Res)
%
% If N is a number, N is normalized
nf_number(N,Res) :-
rational(N),
Rat is rationalize(N),
( Rat =:= 0
-> Res = []
; Res = [v(Rat,[])]
).
nonlin_1(abs(X),X,abs(Y),Y).
nonlin_1(sin(X),X,sin(Y),Y).
nonlin_1(cos(X),X,cos(Y),Y).
nonlin_1(tan(X),X,tan(Y),Y).
nonlin_2(min(A,B),A,B,min(X,Y),X,Y).
nonlin_2(max(A,B),A,B,max(X,Y),X,Y).
nonlin_2(exp(A,B),A,B,exp(X,Y),X,Y).
nonlin_2(pow(A,B),A,B,exp(X,Y),X,Y). % pow->exp
nonlin_2(A^B,A,B,exp(X,Y),X,Y).
nf_nonlin_1(Skel,An,S1,Norm) :-
( nf_constant(An,S1)
-> nl_eval(Skel,Res),
nf_number(Res,Norm)
; S1 = An,
Norm = [v(1,[Skel^1])]).
nf_nonlin_2(Skel,A1n,A2n,S1,S2,Norm) :-
( nf_constant(A1n,S1),
nf_constant(A2n,S2)
-> nl_eval(Skel,Res),
nf_number(Res,Norm)
; Skel=exp(_,_),
nf_constant(A2n,Exp),
integer(Exp)
-> nf_power(Exp,A1n,Norm)
; S1 = A1n,
S2 = A2n,
Norm = [v(1,[Skel^1])]
).
% evaluates non-linear functions in one variable where the variable is bound
nl_eval(abs(X),R) :- R is abs(X).
nl_eval(sin(X),R) :- R is sin(X).
nl_eval(cos(X),R) :- R is cos(X).
nl_eval(tan(X),R) :- R is tan(X).
% evaluates non-linear functions in two variables where both variables are
% bound
nl_eval(min(X,Y),R) :- R is min(X,Y).
nl_eval(max(X,Y),R) :- R is max(X,Y).
nl_eval(exp(X,Y),R) :- R is X**Y.
%
% check if a Nf consists of just a constant
%
nf_constant([],Z) :- Z = 0.
nf_constant([v(K,[])],K).
% split(NF,SNF,C)
%
% splits a normalform expression NF into two parts:
% - a constant term C (which might be 0)
% - the homogene part of the expression
%
% this method depends on the polynf ordering, i.e. [] < [X^1] ...
split([],[],0).
split([First|T],H,I) :-
( First = v(I,[])
-> H = T
; I = 0,
H = [First|T]
).
% nf_add(A,B,C): merges two normalized additions into a new normalized addition
%
% a normalized addition is one where the terms are ordered, e.g. X^1 < Y^1, X^1 < X^2 etc.
% terms in the same variable with the same exponent are added,
% e.g. when A contains v(5,[X^1]) and B contains v(4,[X^1]) then C contains v(9,[X^1]).
nf_add([],Bs,Bs).
nf_add([A|As],Bs,Cs) :- nf_add(Bs,A,As,Cs).
nf_add([],A,As,Cs) :- Cs = [A|As].
nf_add([B|Bs],A,As,Cs) :-
A = v(Ka,Pa),
B = v(Kb,Pb),
compare(Rel,Pa,Pb),
nf_add_case(Rel,A,As,Cs,B,Bs,Ka,Kb,Pa).
% nf_add_case(Rel,A,As,Cs,B,Bs,Ka,Kb,Pa)
%
% merges sorted lists [A|As] and [B|Bs] into new sorted list Cs
% A = v(Ka,Pa) and B = v(Kb,_)
% Rel is the ordering relation (<, > or =) between A and B.
% when Rel is =, Ka and Kb are added to form a new scalar for Pa
nf_add_case(<,A,As,Cs,B,Bs,_,_,_) :-
Cs = [A|Rest],
nf_add(As,B,Bs,Rest).
nf_add_case(>,A,As,Cs,B,Bs,_,_,_) :-
Cs = [B|Rest],
nf_add(Bs,A,As,Rest).
nf_add_case(=,_,As,Cs,_,Bs,Ka,Kb,Pa) :-
Kc is Ka + Kb,
( Kc =:= 0.0
-> nf_add(As,Bs,Cs)
; Cs = [v(Kc,Pa)|Rest],
nf_add(As,Bs,Rest)
).
nf_mul(A,B,Res) :-
nf_length(A,0,LenA),
nf_length(B,0,LenB),
nf_mul_log(LenA,A,[],LenB,B,Res).
nf_mul_log(0,As,As,_,_,[]) :- !.
nf_mul_log(1,[A|As],As,Lb,B,R) :-
!,
nf_mul_factor_log(Lb,B,[],A,R).
nf_mul_log(2,[A1,A2|As],As,Lb,B,R) :-
!,
nf_mul_factor_log(Lb,B,[],A1,A1b),
nf_mul_factor_log(Lb,B,[],A2,A2b),
nf_add(A1b,A2b,R).
nf_mul_log(N,A0,A2,Lb,B,R) :-
P is N>>1,
Q is N-P,
nf_mul_log(P,A0,A1,Lb,B,Rp),
nf_mul_log(Q,A1,A2,Lb,B,Rq),
nf_add(Rp,Rq,R).
% nf_add_2: does the same thing as nf_add, but only has 2 elements to combine.
nf_add_2(Af,Bf,Res) :- % unfold: nf_add([Af],[Bf],Res).
Af = v(Ka,Pa),
Bf = v(Kb,Pb),
compare(Rel,Pa,Pb),
nf_add_2_case(Rel,Af,Bf,Res,Ka,Kb,Pa).
nf_add_2_case(<,Af,Bf,[Af,Bf],_,_,_).
nf_add_2_case(>,Af,Bf,[Bf,Af],_,_,_).
nf_add_2_case(=,_, _,Res,Ka,Kb,Pa) :-
Kc is Ka + Kb,
( Kc =:= 0
-> Res = []
; Res = [v(Kc,Pa)]
).
% nf_mul_k(A,B,C)
%
% C is the result of the multiplication of each element of A (of the form v(_,_)) with scalar B (which shouldn't be 0)
nf_mul_k([],_,[]).
nf_mul_k([v(I,P)|Vs],K,[v(Ki,P)|Vks]) :-
Ki is K*I,
nf_mul_k(Vs,K,Vks).
% nf_mul_factor(A,Sum,Res)
%
% multiplies each element of the list Sum with factor A which is of the form v(_,_)
% and puts the result in the sorted list Res.
nf_mul_factor(v(K,[]),Sum,Res) :-
!,
nf_mul_k(Sum,K,Res).
nf_mul_factor(F,Sum,Res) :-
nf_length(Sum,0,Len),
nf_mul_factor_log(Len,Sum,[],F,Res).
% nf_mul_factor_log(Len,[Sum|SumTail],SumTail,F,Res)
%
% multiplies each element of Sum with F and puts the result in the sorted list Res
% Len is the length of Sum
% Sum is split logarithmically each step
nf_mul_factor_log(0,As,As,_,[]) :- !.
nf_mul_factor_log(1,[A|As],As,F,[R]) :-
!,
mult(A,F,R).
nf_mul_factor_log(2,[A,B|As],As,F,Res) :-
!,
mult(A,F,Af),
mult(B,F,Bf),
nf_add_2(Af,Bf,Res).
nf_mul_factor_log(N,A0,A2,F,R) :-
P is N>>1, % P is rounded(N/2)
Q is N-P,
nf_mul_factor_log(P,A0,A1,F,Rp),
nf_mul_factor_log(Q,A1,A2,F,Rq),
nf_add(Rp,Rq,R).
% mult(A,B,C)
%
% multiplies A and B into C each of the form v(_,_)
mult(v(Ka,La),v(Kb,Lb),v(Kc,Lc)) :-
Kc is Ka*Kb,
pmerge(La,Lb,Lc).
% pmerge(A,B,C)
%
% multiplies A and B into sorted C, where each is of the form of the second argument of v(_,_)
pmerge([],Bs,Bs).
pmerge([A|As],Bs,Cs) :- pmerge(Bs,A,As,Cs).
pmerge([],A,As,Res) :- Res = [A|As].
pmerge([B|Bs],A,As,Res) :-
A = Xa^Ka,
B = Xb^Kb,
compare(R,Xa,Xb),
pmerge_case(R,A,As,Res,B,Bs,Ka,Kb,Xa).
% pmerge_case(Rel,A,As,Res,B,Bs,Ka,Kb,Xa)
%
% multiplies and sorts [A|As] with [B|Bs] into Res where each is of the form of
% the second argument of v(_,_)
%
% A is Xa^Ka and B is Xb^Kb, Rel is ordening relation between Xa and Xb
pmerge_case(<,A,As,Res,B,Bs,_,_,_) :-
Res = [A|Tail],
pmerge(As,B,Bs,Tail).
pmerge_case(>,A,As,Res,B,Bs,_,_,_) :-
Res = [B|Tail],
pmerge(Bs,A,As,Tail).
pmerge_case(=,_,As,Res,_,Bs,Ka,Kb,Xa) :-
Kc is Ka + Kb,
( Kc =:= 0
-> pmerge(As,Bs,Res)
; Res = [Xa^Kc|Tail],
pmerge(As,Bs,Tail)
).
% nf_div(Factor,In,Out)
%
% Out is the result of the division of each element in In (which is of the form v(_,_)) by Factor.
% division by zero
nf_div([],_,_) :-
!,
zero_division.
% division by v(K,P) => multiplication by v(1/K,P^-1)
nf_div([v(K,P)],Sum,Res) :-
!,
Ki is 1 rdiv K,
mult_exp(P,-1,Pi),
nf_mul_factor(v(Ki,Pi),Sum,Res).
nf_div(D,A,[v(1,[(A/D)^1])]).
% zero_division
%
% called when a division by zero is performed
zero_division :- fail. % raise_exception(_) ?
% mult_exp(In,Factor,Out)
%
% Out is the result of the multiplication of the exponents of the elements in In
% (which are of the form X^Exp by Factor.
mult_exp([],_,[]).
mult_exp([X^P|Xs],K,[X^I|Tail]) :-
I is K*P,
mult_exp(Xs,K,Tail).
%
% raise to integer powers
%
% | ?- time({(1+X+Y+Z)^15=0}). (sicstus, try with SWI)
% Timing 00:00:02.610 2.610 iterative
% Timing 00:00:00.660 0.660 binomial
nf_power(N,Sum,Norm) :-
integer(N),
compare(Rel,N,0),
( Rel = (<)
-> Pn is -N,
% nf_power_pos(Pn,Sum,Inorm),
binom(Sum,Pn,Inorm),
nf_div(Inorm,[v(1,[])],Norm)
; Rel = (>)
-> % nf_power_pos(N,Sum,Norm)
binom(Sum,N,Norm)
; Rel = (=)
-> % 0^0 is indeterminate but we say 1
Norm = [v(1,[])]
).
%
% N>0
%
% iterative method: X^N = X*(X^N-1)
nf_power_pos(1,Sum,Norm) :-
!,
Sum = Norm.
nf_power_pos(N,Sum,Norm) :-
N1 is N-1,
nf_power_pos(N1,Sum,Pn1),
nf_mul(Sum,Pn1,Norm).
%
% N>0
%
% binomial method
binom(Sum,1,Power) :-
!,
Power = Sum.
binom([],_,[]).
binom([A|Bs],N,Power) :-
( Bs = []
-> nf_power_factor(A,N,Ap),
Power = [Ap]
; Bs = [_|_]
-> factor_powers(N,A,v(1,[]),Pas),
sum_powers(N,Bs,[v(1,[])],Pbs,[]),
combine_powers(Pas,Pbs,0,N,1,[],Power)
).
combine_powers([],[],_,_,_,Pi,Pi).
combine_powers([A|As],[B|Bs],L,R,C,Pi,Po) :-
nf_mul(A,B,Ab),
nf_mul_k(Ab,C,Abc),
nf_add(Abc,Pi,Pii),
L1 is L+1,
R1 is R-1,
C1 is C*R//L1,
combine_powers(As,Bs,L1,R1,C1,Pii,Po).
nf_power_factor(v(K,P),N,v(Kn,Pn)) :-
Kn is K**N,
mult_exp(P,N,Pn).
factor_powers(0,_,Prev,[[Prev]]) :- !.
factor_powers(N,F,Prev,[[Prev]|Ps]) :-
N1 is N-1,
mult(Prev,F,Next),
factor_powers(N1,F,Next,Ps).
sum_powers(0,_,Prev,[Prev|Lt],Lt) :- !.
sum_powers(N,S,Prev,L0,Lt) :-
N1 is N-1,
nf_mul(S,Prev,Next),
sum_powers(N1,S,Next,L0,[Prev|Lt]).
% ------------------------------------------------------------------------------
repair(Sum,Norm) :-
nf_length(Sum,0,Len),
repair_log(Len,Sum,[],Norm).
repair_log(0,As,As,[]) :- !.
repair_log(1,[v(Ka,Pa)|As],As,R) :-
!,
repair_term(Ka,Pa,R).
repair_log(2,[v(Ka,Pa),v(Kb,Pb)|As],As,R) :-
!,
repair_term(Ka,Pa,Ar),
repair_term(Kb,Pb,Br),
nf_add(Ar,Br,R).
repair_log(N,A0,A2,R) :-
P is N>>1,
Q is N-P,
repair_log(P,A0,A1,Rp),
repair_log(Q,A1,A2,Rq),
nf_add(Rp,Rq,R).
repair_term(K,P,Norm) :-
length(P,Len),
repair_p_log(Len,P,[],Pr,[v(1,[])],Sum),
nf_mul_factor(v(K,Pr),Sum,Norm).
repair_p_log(0,Ps,Ps,[],L0,L0) :- !.
repair_p_log(1,[X^P|Ps],Ps,R,L0,L1) :-
!,
repair_p(X,P,R,L0,L1).
repair_p_log(2,[X^Px,Y^Py|Ps],Ps,R,L0,L2) :-
!,
repair_p(X,Px,Rx,L0,L1),
repair_p(Y,Py,Ry,L1,L2),
pmerge(Rx,Ry,R).
repair_p_log(N,P0,P2,R,L0,L2) :-
P is N>>1,
Q is N-P,
repair_p_log(P,P0,P1,Rp,L0,L1),
repair_p_log(Q,P1,P2,Rq,L1,L2),
pmerge(Rp,Rq,R).
repair_p(Term,P,[Term^P],L0,L0) :- var(Term).
repair_p(Term,P,[],L0,L1) :-
nonvar(Term),
repair_p_one(Term,TermN),
nf_power(P,TermN,TermNP),
nf_mul(TermNP,L0,L1).
%
% An undigested term a/b is distinguished from an
% digested one by the fact that its arguments are
% digested -> cuts after repair of args!
%
repair_p_one(Term,TermN) :-
nf_number(Term,TermN), % freq. shortcut for nf/2 case below
!.
repair_p_one(A1/A2,TermN) :-
repair(A1,A1n),
repair(A2,A2n),
!,
nf_div(A2n,A1n,TermN).
repair_p_one(Term,TermN) :-
nonlin_1(Term,Arg,Skel,Sa),
repair(Arg,An),
!,
nf_nonlin_1(Skel,An,Sa,TermN).
repair_p_one(Term,TermN) :-
nonlin_2(Term,A1,A2,Skel,Sa1,Sa2),
repair(A1,A1n),
repair(A2,A2n),
!,
nf_nonlin_2(Skel,A1n,A2n,Sa1,Sa2,TermN).
repair_p_one(Term,TermN) :-
nf(Term,TermN).
nf_length([],Li,Li).
nf_length([_|R],Li,Lo) :-
Lii is Li+1,
nf_length(R,Lii,Lo).
% ------------------------------------------------------------------------------
% nf2term(NF,Term)
%
% transforms a normal form into a readable term
% empty normal form = 0
nf2term([],0).
% term is first element (+ next elements)
nf2term([F|Fs],T) :-
f02t(F,T0), % first element
yfx(Fs,T0,T). % next elements
yfx([],T0,T0).
yfx([F|Fs],T0,TN) :-
fn2t(F,Ft,Op),
T1 =.. [Op,T0,Ft],
yfx(Fs,T1,TN).
% f02t(v(K,P),T)
%
% transforms the first element of the normal form (something of the form v(K,P))
% into a readable term
f02t(v(K,P),T) :-
( % just a constant
P = []
-> T = K
; K =:= 1
-> p2term(P,T)
; K =:= -1
-> T = -Pt,
p2term(P,Pt)
; T = K*Pt,
p2term(P,Pt)
).
% f02t(v(K,P),T,Op)
%
% transforms a next element of the normal form (something of the form v(K,P))
% into a readable term
fn2t(v(K,P),Term,Op) :-
( K =:= 1
-> Term = Pt,
Op = +
; K =:= -1
-> Term = Pt,
Op = -
; K < 0
-> Kf is -K,
Term = Kf*Pt,
Op = -
; Term = K*Pt,
Op = +
),
p2term(P,Pt).
% transforms the P part in v(_,P) into a readable term
p2term([X^P|Xs],Term) :-
( Xs = []
-> pe2term(X,Xt),
exp2term(P,Xt,Term)
; Xs = [_|_]
-> Term = Xst*Xtp,
pe2term(X,Xt),
exp2term(P,Xt,Xtp),
p2term(Xs,Xst)
).
%
exp2term(1,X,X) :- !.
exp2term(-1,X,1/X) :- !.
exp2term(P,X,Term) :-
% Term = exp(X,Pn)
Term = X^P.
pe2term(X,Term) :-
var(X),
Term = X.
pe2term(X,Term) :-
nonvar(X),
X =.. [F|Args],
pe2term_args(Args,Argst),
Term =.. [F|Argst].
pe2term_args([],[]).
pe2term_args([A|As],[T|Ts]) :-
nf2term(A,T),
pe2term_args(As,Ts).
% transg(Goal,[OutList|OutListTail],OutListTail)
%
% puts the equalities and inequalities that are implied by the elements in Goal
% in the difference list OutList
%
% called by geler.pl for project.pl
transg(resubmit_eq(Nf)) -->
{
nf2term([],Z),
nf2term(Nf,Term)
},
[clpq:{Term=Z}].
transg(resubmit_lt(Nf)) -->
{
nf2term([],Z),
nf2term(Nf,Term)
},
[clpq:{Term<Z}].
transg(resubmit_le(Nf)) -->
{
nf2term([],Z),
nf2term(Nf,Term)
},
[clpq:{Term=<Z}].
transg(resubmit_ne(Nf)) -->
{
nf2term([],Z),
nf2term(Nf,Term)
},
[clpq:{Term=\=Z}].
transg(wait_linear_retry(Nf,Res,Goal)) -->
{
nf2term(Nf,Term)
},
[clpq:{Term=Res},Goal].
|