This file is indexed.

/usr/share/Yap/coinduction.yap is in yap 6.2.2-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*************************************************************************
*									 *
*	 YAP Prolog 							 *
*									 *
*	Yap Prolog was developed at NCCUP - Universidade do Porto	 *
*									 *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997	 *
*									 *
**************************************************************************
*									 *
* File:		atts.yap						 *
* Last rev:	8/2/88							 *
* mods:									 *
* comments:	attribute support for Prolog				 *
*									 *
*************************************************************************/

% :- yap_flag(unknown,error).
% :- style_check(all).

%
% Code originally written by Arvin Bansal and Vitor Santos Costa
% Includes nice extensions from Jan Wielemaker (from the SWI version).
%

:- module(coinduction,
          [ (coinductive)/1,
            op(1150, fx, (coinductive))
          ]).

:- use_module(library(error)).

/** <module> Co-Logic Programming

This simple module implements the   directive coinductive/1 as described
in "Co-Logic Programming: Extending Logic  Programming with Coinduction"
by Luke Somin et al. The idea behind coinduction is that a goal succeeds
if it unifies to a parent goal.  This enables some interesting programs,
notably on infinite trees (cyclic terms).

    ==
    :- use_module(library(coinduction)).

    :- coinductive stream/1. 
    stream([H|T]) :- i(H), stream(T).

    % inductive
    i(0).
    i(s(N)) :- i(N).

    ?- X=[s(s(A))|X], stream(X).
     X= [s(s(A))|X], stream(X).
     A = 0,
     X = [s(s(0)),**]
    ==

This predicate is  true  for  any   cyclic  list  containing  only  1-s,
regardless of the cycle-length.

@bug    Programs mixing normal predicates and coinductive predicates must
        be _stratified_.  The theory does not apply to normal Prolog calling
        coinductive predicates, calling normal Prolog predicates, etc.

        Stratification is not checked or enforced in any other way and thus
        left as a responsibility to the user.
@see    "Co-Logic Programming: Extending Logic  Programming with Coinduction"
        by Luke Somin et al.
*/

:- meta_predicate coinductive(:).

:- dynamic coinductive/3.


%-----------------------------------------------------

coinductive(Spec) :-
	var(Spec),
	!,
	throw(error(instantiation_error,coinductive(Spec))).
coinductive(Module:Spec) :-
        coinductive_declaration(Spec, Module, coinductive(Module:Spec)).
coinductive(Spec) :-
        prolog_load_context(module, Module),
        coinductive_declaration(Spec, Module, coinductive(Spec)).
	
coinductive_declaration(Spec, _M, G) :-
	var(Spec),
	!,
	throw(error(instantiation_error,G)).
coinductive_declaration((A,B), M, G) :- !,
	coinductive_declaration(A, M, G),
	coinductive_declaration(B, M, G).
coinductive_declaration(M:Spec, _, G) :- !,
	coinductive_declaration(Spec, M, G).
coinductive_declaration(Spec, M, _G) :-
	valid_pi(Spec, F, N),
	functor(S,F,N), 
	atomic_concat(['__coinductive__',F,'/',N],NF),
	functor(NS,NF,N), 
	match_args(N,S,NS),
	atomic_concat(['__stack_',M,':',F,'/',N],SF), 
	nb_setval(SF, _),
	assert((M:S :-
	       b_getval(SF,L),
		coinduction:in_stack(S, L, End),
		(
		 nonvar(End)
		->
		 true
		;
		 End = [S|_],
		 M:NS)
	       )
	      ),
	assert(coinduction:coinductive(S,M,NS)).
  
valid_pi(Name/Arity, Name, Arity) :-
        must_be(atom, Name),
        must_be(integer, Arity).

match_args(0,_,_) :- !.
match_args(I,S1,S2) :-
	arg(I,S1,A),
	arg(I,S2,A),
	I1 is I-1,
	match_args(I1,S1,S2).

%-----------------------------------------------------

co_term_expansion((M:H :- B), _, (M:NH :- B)) :- !,
	co_term_expansion((H :- B), M, (NH :- B)).
co_term_expansion((H :- B), M, (NH :- B)) :- !,
	coinductive(H, M, NH), !.
co_term_expansion(H, M, NH) :-
	coinductive(H, M, NH), !.

user:term_expansion(M:Cl,M:NCl ) :- !,
	co_term_expansion(Cl, M, NCl).

user:term_expansion(G, NG) :-
        prolog_load_context(module, Module),
	co_term_expansion(G, Module, NG).


%-----------------------------------------------------

in_stack(_, V, V) :- var(V), !.
in_stack(G, [G|_], [G|_]) :- !.
in_stack(G, [_|T], End) :- in_stack(G, T, End).

writeG_val(G_var) :- 
  b_getval(G_var, G_val),
  write(G_var), write(' ==> '), write(G_val), nl.

%-----------------------------------------------------

/**************************************

  Some examples from Coinductive Logic Programming and its Applications by Gopal Gupta et al, ICLP 97

:- coinductive stream/1. 
stream([H|T]) :- i(H), stream(T).

% inductive
i(0).
i(s(N)) :- i(N).

**************************************/