/usr/share/Yap/lists.yap is in yap 6.2.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | % This file has been included as an YAP library by Vitor Santos Costa, 1999
%
% This file includes code from Bob Welham, Lawrence Byrd, and R. A. O'Keefe.
%
:- module(lists,
[
append/3,
append/2,
delete/3,
intersection/3,
flatten/2,
last/2,
list_concat/2,
max_list/2,
member/2,
memberchk/2,
min_list/2,
nextto/3,
nth/3,
nth/4,
nth0/3,
nth0/4,
nth1/3,
nth1/4,
numlist/3,
permutation/2,
prefix/2,
remove_duplicates/2,
reverse/2,
same_length/2,
select/3,
selectchk/3,
sublist/2,
substitute/4,
subtract/3,
suffix/2,
sum_list/2,
sum_list/3,
sumlist/2
]).
:- use_module(library(error),
[must_be/2]).
%% append(+ListOfLists, ?List)
%
% Concatenate a list of lists. Is true if Lists is a list of
% lists, and List is the concatenation of these lists.
%
% @param ListOfLists must be a list of -possibly- partial lists
append(ListOfLists, List) :-
% must_be(list, ListOfLists),
append_(ListOfLists, List).
append_([], []).
append_([L|Ls], As) :-
append(L, Ws, As),
append_(Ls, Ws).
% delete(List, Elem, Residue)
% is true when List is a list, in which Elem may or may not occur, and
% Residue is a copy of List with all elements identical to Elem deleted.
delete([], _, []).
delete([Head|List], Elem, Residue) :-
Head == Elem, !,
delete(List, Elem, Residue).
delete([Head|List], Elem, [Head|Residue]) :-
delete(List, Elem, Residue).
% last(List, Last)
% is true when List is a List and Last is identical to its last element.
% This could be defined as last(L, X) :- append(_, [X], L).
last([H|List], Last) :-
last(List, H, Last).
last([], Last, Last).
last([H|List], _, Last) :-
last(List, H, Last).
% nextto(X, Y, List)
% is true when X and Y appear side-by-side in List. It could be written as
% nextto(X, Y, List) :- append(_, [X,Y,_], List).
% It may be used to enumerate successive pairs from the list.
nextto(X,Y, [X,Y|_]).
nextto(X,Y, [_|List]) :-
nextto(X,Y, List).
% nth0(?N, +List, ?Elem) is true when Elem is the Nth member of List,
% counting the first as element 0. (That is, throw away the first
% N elements and unify Elem with the next.) It can only be used to
% select a particular element given the list and index. For that
% task it is more efficient than nmember.
% nth(+N, +List, ?Elem) is the same as nth0, except that it counts from
% 1, that is nth(1, [H|_], H).
nth0(V, In, Element) :- var(V), !,
generate_nth(0, V, In, Element).
nth0(0, [Head|_], Head) :- !.
nth0(N, [_|Tail], Elem) :-
M is N-1,
find_nth0(M, Tail, Elem).
find_nth0(0, [Head|_], Head) :- !.
find_nth0(N, [_|Tail], Elem) :-
M is N-1,
find_nth0(M, Tail, Elem).
nth1(V, In, Element) :- var(V), !,
generate_nth(1, V, In, Element).
nth1(1, [Head|_], Head) :- !.
nth1(N, [_|Tail], Elem) :-
nonvar(N), !,
M is N-1, % should be succ(M, N)
find_nth(M, Tail, Elem).
nth(V, In, Element) :- var(V), !,
generate_nth(1, V, In, Element).
nth(1, [Head|_], Head) :- !.
nth(N, [_|Tail], Elem) :-
nonvar(N), !,
M is N-1, % should be succ(M, N)
find_nth(M, Tail, Elem).
find_nth(1, [Head|_], Head) :- !.
find_nth(N, [_|Tail], Elem) :-
M is N-1,
find_nth(M, Tail, Elem).
generate_nth(I, I, [Head|_], Head).
generate_nth(I, IN, [_|List], El) :-
I1 is I+1,
generate_nth(I1, IN, List, El).
% nth0(+N, ?List, ?Elem, ?Rest) unifies Elem with the Nth element of List,
% counting from 0, and Rest with the other elements. It can be used
% to select the Nth element of List (yielding Elem and Rest), or to
% insert Elem before the Nth (counting from 1) element of Rest, when
% it yields List, e.g. nth0(2, List, c, [a,b,d,e]) unifies List with
% [a,b,c,d,e]. nth is the same except that it counts from 1. nth
% can be used to insert Elem after the Nth element of Rest.
nth0(V, In, Element, Tail) :- var(V), !,
generate_nth(0, V, In, Element, Tail).
nth0(0, [Head|Tail], Head, Tail) :- !.
nth0(N, [Head|Tail], Elem, [Head|Rest]) :-
M is N-1,
nth0(M, Tail, Elem, Rest).
find_nth0(0, [Head|Tail], Head, Tail) :- !.
find_nth0(N, [Head|Tail], Elem, [Head|Rest]) :-
M is N-1,
find_nth0(M, Tail, Elem, Rest).
nth1(V, In, Element, Tail) :- var(V), !,
generate_nth(1, V, In, Element, Tail).
nth1(1, [Head|Tail], Head, Tail) :- !.
nth1(N, [Head|Tail], Elem, [Head|Rest]) :-
M is N-1,
nth1(M, Tail, Elem, Rest).
nth(V, In, Element, Tail) :- var(V), !,
generate_nth(1, V, In, Element, Tail).
nth(1, [Head|Tail], Head, Tail) :- !.
nth(N, [Head|Tail], Elem, [Head|Rest]) :-
M is N-1,
nth(M, Tail, Elem, Rest).
find_nth(1, [Head|Tail], Head, Tail) :- !.
find_nth(N, [Head|Tail], Elem, [Head|Rest]) :-
M is N-1,
find_nth(M, Tail, Elem, Rest).
generate_nth(I, I, [Head|Tail], Head, Tail).
generate_nth(I, IN, [E|List], El, [E|Tail]) :-
I1 is I+1,
generate_nth(I1, IN, List, El, Tail).
% permutation(List, Perm)
% is true when List and Perm are permutations of each other. Of course,
% if you just want to test that, the best way is to keysort/2 the two
% lists and see if the results are the same. Or you could use list_to_bag
% (from BagUtl.Pl) to see if they convert to the same bag. The point of
% perm is to generate permutations. The arguments may be either way round,
% the only effect will be the order in which the permutations are tried.
% Be careful: this is quite efficient, but the number of permutations of an
% N-element list is N!, even for a 7-element list that is 5040.
permutation([], []).
permutation(List, [First|Perm]) :-
select(First, List, Rest), % tries each List element in turn
permutation(Rest, Perm).
% prefix(Part, Whole) iff Part is a leading substring of Whole
prefix([], _).
prefix([Elem | Rest_of_part], [Elem | Rest_of_whole]) :-
prefix(Rest_of_part, Rest_of_whole).
% remove_duplicates(List, Pruned)
% removes duplicated elements from List. Beware: if the List has
% non-ground elements, the result may surprise you.
remove_duplicates([], []).
remove_duplicates([Elem|L], [Elem|NL]) :-
delete(L, Elem, Temp),
remove_duplicates(Temp, NL).
% reverse(List, Reversed)
% is true when List and Reversed are lists with the same elements
% but in opposite orders. rev/2 is a synonym for reverse/2.
reverse(List, Reversed) :-
reverse(List, [], Reversed).
reverse([], Reversed, Reversed).
reverse([Head|Tail], Sofar, Reversed) :-
reverse(Tail, [Head|Sofar], Reversed).
% same_length(?List1, ?List2)
% is true when List1 and List2 are both lists and have the same number
% of elements. No relation between the values of their elements is
% implied.
% Modes same_length(-,+) and same_length(+,-) generate either list given
% the other; mode same_length(-,-) generates two lists of the same length,
% in which case the arguments will be bound to lists of length 0, 1, 2, ...
same_length([], []).
same_length([_|List1], [_|List2]) :-
same_length(List1, List2).
%% selectchk(+Elem, +List, -Rest) is semidet.
%
% Semi-deterministic removal of first element in List that unifies
% Elem.
selectchk(Elem, List, Rest) :-
select(Elem, List, Rest0), !,
Rest = Rest0.
% select(?Element, ?Set, ?Residue)
% is true when Set is a list, Element occurs in Set, and Residue is
% everything in Set except Element (things stay in the same order).
select(Element, [Element|Rest], Rest).
select(Element, [Head|Tail], [Head|Rest]) :-
select(Element, Tail, Rest).
% sublist(Sublist, List)
% is true when both append(_,Sublist,S) and append(S,_,List) hold.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% sublist(?Sub, +List) is nondet.
%
% True if all elements of Sub appear in List in the same order.
sublist(L, L).
sublist(Sub, [H|T]) :-
'$sublist1'(T, H, Sub).
'$sublist1'(Sub, _, Sub).
'$sublist1'([H|T], _, Sub) :-
'$sublist1'(T, H, Sub).
'$sublist1'([H|T], X, [X|Sub]) :-
'$sublist1'(T, H, Sub).
% substitute(X, XList, Y, YList)
% is true when XList and YList only differ in that the elements X in XList
% are replaced by elements Y in the YList.
substitute(X, XList, Y, YList) :-
substitute2(XList, X, Y, YList).
substitute2([], _, _, []).
substitute2([X0|XList], X, Y, [Y|YList]) :-
X == X0, !,
substitute2(XList, X, Y, YList).
substitute2([X0|XList], X, Y, [X0|YList]) :-
substitute2(XList, X, Y, YList).
% suffix(Suffix, List)
% holds when append(_,Suffix,List) holds.
suffix(Suffix, Suffix).
suffix(Suffix, [_|List]) :-
suffix(Suffix,List).
% sumlist(Numbers, Total)
% is true when Numbers is a list of integers, and Total is their sum.
sumlist(Numbers, Total) :-
sumlist(Numbers, 0, Total).
sum_list(Numbers, SoFar, Total) :-
sumlist(Numbers, SoFar, Total).
sum_list(Numbers, Total) :-
sumlist(Numbers, 0, Total).
sumlist([], Total, Total).
sumlist([Head|Tail], Sofar, Total) :-
Next is Sofar+Head,
sumlist(Tail, Next, Total).
% list_concat(Lists, List)
% is true when Lists is a list of lists, and List is the
% concatenation of these lists.
list_concat([], []).
list_concat([H|T], L) :-
list_concat(H, L, Li),
list_concat(T, Li).
list_concat([], L, L).
list_concat([H|T], [H|Lf], Li) :-
list_concat(T, Lf, Li).
%
% flatten a list
%
flatten(X,Y) :- flatten_list(X,Y,[]).
flatten_list(V) --> {var(V)}, !, [V].
flatten_list([]) --> !.
flatten_list([H|T]) --> !, flatten_list(H),flatten_list(T).
flatten_list(H) --> [H].
max_list([H|L],Max) :-
max_list(L,H,Max).
max_list([],Max,Max).
max_list([H|L],Max0,Max) :-
(
H > Max0
->
max_list(L,H,Max)
;
max_list(L,Max0,Max)
).
min_list([H|L],Max) :-
min_list(L,H,Max).
min_list([],Max,Max).
min_list([H|L],Max0,Max) :-
(
H < Max0
->
min_list(L, H, Max)
;
min_list(L, Max0, Max)
).
%% numlist(+Low, +High, -List) is semidet.
%
% List is a list [Low, Low+1, ... High]. Fails if High < Low.%
%
% @error type_error(integer, Low)
% @error type_error(integer, High)
numlist(L, U, Ns) :-
must_be(integer, L),
must_be(integer, U),
L =< U,
numlist_(L, U, Ns).
numlist_(U, U, OUT) :- !, OUT = [U].
numlist_(L, U, [L|Ns]) :-
succ(L, L2),
numlist_(L2, U, Ns).
% copied from SWI lists library.
intersection([], _, []) :- !.
intersection([X|T], L, Intersect) :-
memberchk(X, L), !,
Intersect = [X|R],
intersection(T, L, R).
intersection([_|T], L, R) :-
intersection(T, L, R).
%% subtract(+Set, +Delete, -Result) is det.
%
% Delete all elements from `Set' that occur in `Delete' (a set)
% and unify the result with `Result'. Deletion is based on
% unification using memberchk/2. The complexity is |Delete|*|Set|.
%
% @see ord_subtract/3.
subtract([], _, []) :- !.
subtract([E|T], D, R) :-
memberchk(E, D), !,
subtract(T, D, R).
subtract([H|T], D, [H|R]) :-
subtract(T, D, R).
|