/usr/share/Yap/problog_lfi.yap is in yap 6.2.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | %%% -*- Mode: Prolog; -*-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Date: 2011-12-05 14:07:19 +0100 (Mon, 05 Dec 2011) $
% $Revision: 6766 $
%
% This file is part of ProbLog
% http://dtai.cs.kuleuven.be/problog
%
% ProbLog was developed at Katholieke Universiteit Leuven
%
% Copyright 2009
% Angelika Kimmig, Vitor Santos Costa, Bernd Gutmann
%
% Main author of this file:
% Bernd Gutmann
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Artistic License 2.0
%
% Copyright (c) 2000-2006, The Perl Foundation.
%
% Everyone is permitted to copy and distribute verbatim copies of this
% license document, but changing it is not allowed. Preamble
%
% This license establishes the terms under which a given free software
% Package may be copied, modified, distributed, and/or
% redistributed. The intent is that the Copyright Holder maintains some
% artistic control over the development of that Package while still
% keeping the Package available as open source and free software.
%
% You are always permitted to make arrangements wholly outside of this
% license directly with the Copyright Holder of a given Package. If the
% terms of this license do not permit the full use that you propose to
% make of the Package, you should contact the Copyright Holder and seek
% a different licensing arrangement. Definitions
%
% "Copyright Holder" means the individual(s) or organization(s) named in
% the copyright notice for the entire Package.
%
% "Contributor" means any party that has contributed code or other
% material to the Package, in accordance with the Copyright Holder's
% procedures.
%
% "You" and "your" means any person who would like to copy, distribute,
% or modify the Package.
%
% "Package" means the collection of files distributed by the Copyright
% Holder, and derivatives of that collection and/or of those files. A
% given Package may consist of either the Standard Version, or a
% Modified Version.
%
% "Distribute" means providing a copy of the Package or making it
% accessible to anyone else, or in the case of a company or
% organization, to others outside of your company or organization.
%
% "Distributor Fee" means any fee that you charge for Distributing this
% Package or providing support for this Package to another party. It
% does not mean licensing fees.
%
% "Standard Version" refers to the Package if it has not been modified,
% or has been modified only in ways explicitly requested by the
% Copyright Holder.
%
% "Modified Version" means the Package, if it has been changed, and such
% changes were not explicitly requested by the Copyright Holder.
%
% "Original License" means this Artistic License as Distributed with the
% Standard Version of the Package, in its current version or as it may
% be modified by The Perl Foundation in the future.
%
% "Source" form means the source code, documentation source, and
% configuration files for the Package.
%
% "Compiled" form means the compiled bytecode, object code, binary, or
% any other form resulting from mechanical transformation or translation
% of the Source form.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permission for Use and Modification Without Distribution
%
% (1) You are permitted to use the Standard Version and create and use
% Modified Versions for any purpose without restriction, provided that
% you do not Distribute the Modified Version.
%
% Permissions for Redistribution of the Standard Version
%
% (2) You may Distribute verbatim copies of the Source form of the
% Standard Version of this Package in any medium without restriction,
% either gratis or for a Distributor Fee, provided that you duplicate
% all of the original copyright notices and associated disclaimers. At
% your discretion, such verbatim copies may or may not include a
% Compiled form of the Package.
%
% (3) You may apply any bug fixes, portability changes, and other
% modifications made available from the Copyright Holder. The resulting
% Package will still be considered the Standard Version, and as such
% will be subject to the Original License.
%
% Distribution of Modified Versions of the Package as Source
%
% (4) You may Distribute your Modified Version as Source (either gratis
% or for a Distributor Fee, and with or without a Compiled form of the
% Modified Version) provided that you clearly document how it differs
% from the Standard Version, including, but not limited to, documenting
% any non-standard features, executables, or modules, and provided that
% you do at least ONE of the following:
%
% (a) make the Modified Version available to the Copyright Holder of the
% Standard Version, under the Original License, so that the Copyright
% Holder may include your modifications in the Standard Version. (b)
% ensure that installation of your Modified Version does not prevent the
% user installing or running the Standard Version. In addition, the
% modified Version must bear a name that is different from the name of
% the Standard Version. (c) allow anyone who receives a copy of the
% Modified Version to make the Source form of the Modified Version
% available to others under (i) the Original License or (ii) a license
% that permits the licensee to freely copy, modify and redistribute the
% Modified Version using the same licensing terms that apply to the copy
% that the licensee received, and requires that the Source form of the
% Modified Version, and of any works derived from it, be made freely
% available in that license fees are prohibited but Distributor Fees are
% allowed.
%
% Distribution of Compiled Forms of the Standard Version or
% Modified Versions without the Source
%
% (5) You may Distribute Compiled forms of the Standard Version without
% the Source, provided that you include complete instructions on how to
% get the Source of the Standard Version. Such instructions must be
% valid at the time of your distribution. If these instructions, at any
% time while you are carrying out such distribution, become invalid, you
% must provide new instructions on demand or cease further
% distribution. If you provide valid instructions or cease distribution
% within thirty days after you become aware that the instructions are
% invalid, then you do not forfeit any of your rights under this
% license.
%
% (6) You may Distribute a Modified Version in Compiled form without the
% Source, provided that you comply with Section 4 with respect to the
% Source of the Modified Version.
%
% Aggregating or Linking the Package
%
% (7) You may aggregate the Package (either the Standard Version or
% Modified Version) with other packages and Distribute the resulting
% aggregation provided that you do not charge a licensing fee for the
% Package. Distributor Fees are permitted, and licensing fees for other
% components in the aggregation are permitted. The terms of this license
% apply to the use and Distribution of the Standard or Modified Versions
% as included in the aggregation.
%
% (8) You are permitted to link Modified and Standard Versions with
% other works, to embed the Package in a larger work of your own, or to
% build stand-alone binary or bytecode versions of applications that
% include the Package, and Distribute the result without restriction,
% provided the result does not expose a direct interface to the Package.
%
% Items That are Not Considered Part of a Modified Version
%
% (9) Works (including, but not limited to, modules and scripts) that
% merely extend or make use of the Package, do not, by themselves, cause
% the Package to be a Modified Version. In addition, such works are not
% considered parts of the Package itself, and are not subject to the
% terms of this license.
%
% General Provisions
%
% (10) Any use, modification, and distribution of the Standard or
% Modified Versions is governed by this Artistic License. By using,
% modifying or distributing the Package, you accept this license. Do not
% use, modify, or distribute the Package, if you do not accept this
% license.
%
% (11) If your Modified Version has been derived from a Modified Version
% made by someone other than you, you are nevertheless required to
% ensure that your Modified Version complies with the requirements of
% this license.
%
% (12) This license does not grant you the right to use any trademark,
% service mark, tradename, or logo of the Copyright Holder.
%
% (13) This license includes the non-exclusive, worldwide,
% free-of-charge patent license to make, have made, use, offer to sell,
% sell, import and otherwise transfer the Package with respect to any
% patent claims licensable by the Copyright Holder that are necessarily
% infringed by the Package. If you institute patent litigation
% (including a cross-claim or counterclaim) against any party alleging
% that the Package constitutes direct or contributory patent
% infringement, then this Artistic License to you shall terminate on the
% date that such litigation is filed.
%
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:-source.
:- module(problog_lfi,[do_learning/1,
do_learning/2,
create_ground_tunable_fact/2,
reset_learning/0
]).
% switch on all the checks to reduce bug searching time
:- style_check(all).
:- yap_flag(unknown,error).
% load modules from the YAP library
:- use_module(library(lists),[member/2,nth1/3,sum_list/2,min_list/2,max_list/2]).
:- use_module(library(system),[file_exists/1,exec/3,wait/2]).
% load our own modules
:- use_module('problog').
:- use_module('problog/logger').
:- use_module('problog/flags').
:- use_module('problog/os').
:- use_module('problog/completion').
:- use_module('problog/print_learning').
:- use_module('problog/utils_learning').
:- use_module('problog/utils').
:- use_module('problog/ad_converter').
% used to indicate the state of the system
:- dynamic(learning_initialized/0).
:- dynamic(current_iteration/1).
:- dynamic(query_all_scripts/2).
:- dynamic(last_llh/1).
:- discontiguous(user:myclause/1).
:- discontiguous(user:myclause/2).
:- discontiguous(user:known/3).
:- discontiguous(user:example/1).
:- discontiguous(user:test_example/1).
:- multifile(completion:bdd_cluster/2).
%:- multifile(completion:known_count/4).
user:term_expansion(myclause((Head<--Body)), C) :-
prolog_load_context(module,Module),
term_expansion_intern_ad((Head<--Body), Module,lfi_learning, C).
%========================================================================
%= Hack for Ingo, to allow tunable facts with body
%=
%= e.g. :- create_ground_tunable_fact( t(_) :: f(X), member(X,[a,b,c])).
%= will create
%= t(_) :: f(a).
%= t(_) :: f(b).
%= t(_) :: f(c).
%========================================================================
create_ground_tunable_fact(F,B) :-
B,
once(problog_assert(F)),
fail.
create_ground_tunable_fact(_,_).
%========================================================================
%= store the facts with the learned probabilities to a file
%= if F is a variable, a filename based on the current iteration is used
%=
%========================================================================
save_model:-
current_iteration(Iteration),
create_factprobs_file_name(Iteration,Filename),
open(Filename,'write',Handle),
forall((current_predicate(user:ad_intern/3),user:ad_intern(Original,ID,Facts)),
print_ad_intern(Handle,Original,ID,Facts)
),
forall(probabilistic_fact(_,Goal,ID),
(
array_element(factprob,ID,P),
(
is_mvs_aux_fact(Goal)
->
format(Handle,'% ~10f :: ~q. %ID=~q~n',[P,Goal,ID]);
format(Handle ,'~10f :: ~q. %ID=~q~n',[P,Goal,ID])
)
)
),
close(Handle).
is_mvs_aux_fact(A) :-
functor(A,B,_),
atomic_concat(mvs_fact_,_,B).
print_ad_intern(Handle,(Head<--Body),_ID,Facts) :-
format(Handle,'myclause( (',[]),
print_ad_intern(Head,Facts,0.0,Handle),
format(Handle,' <-- ~q) ).~n',[Body]).
print_ad_intern((A1;B1),[A2|B2],Mass,Handle) :-
once(print_ad_intern_one(A1,A2,Mass,NewMass,Handle)),
format(Handle,'; ',[]),
print_ad_intern(B1,B2,NewMass,Handle).
print_ad_intern(_::Fact,[],Mass,Handle) :-
P2 is 1.0 - Mass,
format(Handle,'~f :: ~q',[P2,Fact]).
print_ad_intern_one(_::Fact,_::AuxFact,Mass,NewMass,Handle) :-
% ask problog to get the fact_id
once(probabilistic_fact(_,AuxFact,FactID)),
% look in our table for the probability
array_element(factprob,FactID,P),
P2 is P * (1-Mass),
NewMass is Mass+P2,
format(Handle,'~f :: ~q',[P2,Fact]).
%========================================================================
%= initialize everything and perform Iterations times EM
%= can be called several times
%========================================================================
do_learning(Iterations) :-
do_learning(Iterations,-1).
do_learning(Iterations,Epsilon) :-
integer(Iterations),
number(Epsilon),
Iterations>0,
init_learning,
!,
do_learning_intern(Iterations,Epsilon),
!,
copy_back_fact_probabilities.
do_learning_intern(0,_) :-
!.
do_learning_intern(Iterations,Epsilon) :-
Iterations>0,
logger_start_timer(duration),
current_iteration(CurrentIteration),
!,
retractall(current_iteration(_)),
!,
NextIteration is CurrentIteration+1,
assertz(current_iteration(NextIteration)),
EndIteration is CurrentIteration+Iterations-1,
format_learning(1,'~nIteration ~d of ~d~n',[CurrentIteration,EndIteration]),
logger_set_variable(iteration,CurrentIteration),
write_probabilities_file,
once(llh_testset),
once(ground_truth_difference),
once(em_one_iteration),
problog_flag(log_frequency,Log_Frequency),
(
( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
->
once(save_model);
true
),
!,
(
last_llh(Last_LLH)
->
(
retractall(last_llh(_)),
logger_get_variable(llh_training_set,Current_LLH),
assertz(last_llh(Current_LLH)),
!,
LLH_Diff is abs(Last_LLH-Current_LLH)
); (
logger_get_variable(llh_training_set,Current_LLH),
assertz(last_llh(Current_LLH)),
LLH_Diff is Epsilon+1
)
),
logger_stop_timer(duration),
logger_write_data,
RemainingIterations is Iterations-1,
!,
garbage_collect,
!,
(
LLH_Diff>Epsilon
->
do_learning_intern(RemainingIterations,Epsilon);
true
).
%========================================================================
%= find proofs and build bdds for all training and test examples
%=
%=
%========================================================================
init_learning :-
learning_initialized,
!.
init_learning :-
convert_filename_to_problog_path('problogbdd_lfi', Path),
(
file_exists(Path)
->
true;
(
problog_path(PD),
format(user_error, 'WARNING: Can not find file: problogbdd_lfi. Please place file in problog path: ~q~n',[PD]),
fail
)
),
check_theory,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Delete the stuff from the previous run
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
problog_flag(reuse_initialized_bdds,Re_Use_Flag),
(
Re_Use_Flag==false
->
empty_bdd_directory;
true
),
empty_output_directory,
logger_write_header,
format_learning(1,'Initializing everything~n',[]),
(
current_predicate(user:test_example/1)
->
(
succeeds_n_times(user:test_example(_),TestExampleCount),
format_learning(3,'~q test example(s)~n',[TestExampleCount])
);
true
),
succeeds_n_times(user:example(_),TrainingExampleCount),
format_learning(3,'~q training example(s)~n',[TrainingExampleCount]),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create arrays for probabilties and counting tables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
once(initialize_fact_probabilities),
problog:probclause_id(N),
static_array(factprob_temp,N,float),
static_array(factusage,N,int),
static_array(known_count_true_training,N,int),
static_array(known_count_false_training,N,int),
static_array(known_count_true_test,N,int),
static_array(known_count_false_test,N,int),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% build BDD script for every example
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
once(init_queries),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% done
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
assertz(current_iteration(0)),
assertz(learning_initialized),
once(save_model),
format_learning(1,'~n',[]),
garbage_collect,
garbage_collect_atoms.
%========================================================================
%= This predicate checks some aspects of the data given by the user.
%= You know folks: Garbage in, garbage out.
%=
%========================================================================
check_theory :-
(
(user:myclause(Head,Body),P :: Head)
->
(
format(user_error,'===============================================================~n',[]),
format(user_error,' The theory contains an atom that appears both as probabilistic~n',[]),
format(user_error,' fact and as head of an rule. This is not allowed.~2n',[]),
format(user_error,' ~q~n',[P :: Head]),
format(user_error,' ~q~2n',[myclause(Head,Body)]),
format(user_error,'===============================================================~2n',[]),
throw(bad_theory(Head))
);
true
),
(
(current_predicate(user:example/1),user:example(_))
->
true;
(
format(user_error,'===============================================================~n',[]),
format(user_error,' No training examples specified.~n',[]),
format(user_error,'===============================================================~2n',[]),
throw(bad_theory(no_training_examples))
)
),
(
( current_predicate(user:test_example/1),user:example(ID), user:test_example(ID) )
->
(
format(user_error,'===============================================================~n',[]),
format(user_error,' The example ~q appears both as test and as training example.~n',[ID]),
format(user_error,' Example IDs from test and training examples must be disjoint.~2n',[]),
format(user_error,' Do NOT bypass this test, since the implementation yields wrong resuls~n',[]),
format(user_error,' when an example ID appears both as test and training example.',[]),
format(user_error,'===============================================================~2n',[]),
throw(bad_theory(double_id(ID)))
);
true
),
(
(current_predicate(user:known/3),user:example(ID2),user:known(ID2,_,_))
->
true;
(
format(user_error,'===============================================================~n',[]),
format(user_error,' No evidence specified.~n',[]),
format(user_error,'===============================================================~2n',[]),
throw(bad_theory(no_evidence))
)
),
(
(user:known(ID,Foo,Evidence), (Evidence\=true,Evidence\=false))
->
(
format(user_error,'===============================================================~n',[]),
format(user_error,' Bad evidence for training example ~q: ~q.~n',[ID,known(ID,Foo,Evidence)]),
format(user_error,'===============================================================~2n',[]),
throw(bad_theory(bad_evidence(ID)))
);
true
),
(
(user:known(ID,Foo,true), user:known(ID,Foo,false))
->
(
format(user_error,'===============================================================~n',[]),
format(user_error,' Bad evidence for training example ~q: ~q and ~q~n',[ID,known(ID,Foo,true),known(ID,Foo,false)]),
format(user_error,'===============================================================~2n',[]),
throw(bad_theory(bad_evidence(ID)))
);
true
).
%========================================================================
%= copy fact probabilities to array for speeding up the update
%=
%=
%========================================================================
initialize_fact_probabilities :-
problog:probclause_id(N),
static_array(factprob,N,float),
forall(get_fact_probability(FactID,P),
update_array(factprob,FactID,P)).
copy_back_fact_probabilities :-
forall(tunable_fact(FactID,_),
(
array_element(factprob,FactID,P),
set_fact_probability(FactID,P)
)
).
%========================================================================
%= This predicate goes over all training and test examples,
%= calls the inference method of ProbLog and stores the resulting
%= BDDs
%========================================================================
init_queries :-
problog_flag(cluster_bdds,Cluster_BDDs),
format_learning(2,'Build BDDs for examples~n',[]),
forall(user:example(Training_ID),
(
format_learning(3,'training example ~q: ',[Training_ID]),
init_one_query(Training_ID,training)
)
),
forall(
(
current_predicate(user:test_example/1),
user:test_example(Test_ID)
),
(
format_learning(3,'test example ~q: ',[Test_ID]),
init_one_query(Test_ID,test)
)
),
(
Cluster_BDDs==true
->
(
format_learning(2,'Calculate MD5s for training example BDD scripts~n',[]),
create_training_query_cluster_list(Training_Set_Cluster_List),
format_learning(2,'Calculate MD5s for test example BDD scripts~n',[]),
create_test_query_cluster_list(Test_Set_Cluster_List)
);
(
findall( a(QueryID,ClusterID,1), (
current_predicate(user:test_example/1),
user:test_example(QueryID),
bdd_cluster(QueryID,ClusterIDs),
member(ClusterID,ClusterIDs)
), Test_Set_Cluster_List),
findall( a(QueryID,ClusterID,1), (
user:example(QueryID),
bdd_cluster(QueryID,ClusterIDs),
member(ClusterID,ClusterIDs)
), Training_Set_Cluster_List)
)
),
assertz(training_set_cluster_list(Training_Set_Cluster_List)),
assertz(test_set_cluster_list(Test_Set_Cluster_List)).
%========================================================================
%=
%========================================================================
init_one_query(QueryID,_Query_Type) :-
create_known_values_file_name(QueryID,File_Name),
file_exists(File_Name),
!,
format_learning(3,'Will reuse existing BDD script ~q for example ~q.~n',[File_Name,QueryID]),
consult(File_Name).
%FIXME
% check whether we can read the BDD script for each cluster
init_one_query(QueryID,Query_Type) :-
once(propagate_evidence(QueryID,Query_Type)),
format_learning(3,'~n',[]),
garbage_collect_atoms,
garbage_collect.
create_test_query_cluster_list(L2) :-
findall( a(QueryID,ClusterID), (
current_predicate(user:test_example/1),
user:test_example(QueryID),
bdd_cluster(QueryID,ClusterIDs),
member(ClusterID,ClusterIDs)
), AllCluster),
calc_all_md5(AllCluster,AllCluster2),
findall(a(QueryID1,ClusterID1,Len),(bagof(a(QueryID,ClusterID),member(a(QueryID,ClusterID,_MD5),AllCluster2),L),nth1(1,L,a(QueryID1,ClusterID1)),length(L,Len)),L2),
!,
length(AllCluster,Len1),
length(L2,Len2),
(
Len1>0
->
(
Reduction is Len2/Len1,
format_learning(3,' ~d cluster after splitting, ~d unique cluster ==> reduction factor of ~4f~n',[Len1,Len2,Reduction])
);
true
).
calc_all_md5([],[]).
calc_all_md5([a(QueryID,ClusterID)|T],[a(QueryID,ClusterID,MD5)|T2]) :-
create_bdd_file_name(QueryID,ClusterID,File_Name),
calc_md5(File_Name,MD5),
calc_all_md5(T,T2).
create_training_query_cluster_list(L2) :-
findall( a(QueryID,ClusterID), (
user:example(QueryID),
bdd_cluster(QueryID,ClusterIDs),
member(ClusterID,ClusterIDs)
), AllCluster),
calc_all_md5(AllCluster,AllCluster2),
findall(a(QueryID1,ClusterID1,Len),
(
bagof(a(QueryID,ClusterID),member(a(QueryID,ClusterID,_MD5),AllCluster2),L),
nth1(1,L,a(QueryID1,ClusterID1)),
length(L,Len)
),L2),
length(AllCluster,Len1),
length(L2,Len2),
Reduction is Len2/Len1,
format_learning(3,' ~d cluster after splitting, ~d unique cluster ==> reduction factor of ~4f~n',[Len1,Len2,Reduction]).
%========================================================================
%=
%========================================================================
reset_learning :-
(
learning_initialized
->
(
retractall(current_iteration(_)),
retractall(learning_initialized),
retractall(training_set_cluster_list(_)),
retractall(test_set_cluster_list(_)),
close_static_array(factprob),
close_static_array(factprob_temp),
close_static_array(factusage),
close_static_array(known_count_true_training),
close_static_array(known_count_false_training),
close_static_array(known_count_true_test),
close_static_array(known_count_false_test),
reset_completion,
empty_bdd_directory,
empty_output_directory,
logger_reset_all_variables
);
true
).
%========================================================================
%= calculate the LLH on the test set and set the variable
%= in the logger module
%========================================================================
llh_testset :-
current_predicate(user:test_example/1),
!,
current_iteration(Iteration),
create_test_predictions_file_name(Iteration,F),
open(F,'write',Handle),
catch(
sum_forall(LProb,
(
probabilistic_fact(_,_,FactID),
array_element(factprob,FactID,PFact),
array_element(known_count_true_test,FactID,KK_True),
array_element(known_count_false_test,FactID,KK_False),
(
KK_True>0
->
Part1 is KK_True*log(PFact);
Part1 is 0.0
),
(
KK_False>0
->
LProb is Part1+KK_False*log(1-PFact);
LProb is Part1
)
),
PropagatedLLH
),_,PropagatedLLH is 0.0/0.0),
format(Handle,'prob_known_atoms(~15e).~n',[PropagatedLLH]),
test_set_cluster_list(AllCluster),
% deal with test examples where BDD needs to be evaluated
problog_flag(parallel_processes,Parallel_Processes),
once(evaluate_bdds(AllCluster,Handle,Parallel_Processes,'d',':',PropagatedLLH,LLH)),
logger_set_variable(llh_test_set,LLH),
close(Handle).
llh_testset :-
true.
%========================================================================
%=
%=
%=
%========================================================================
% FIXME
ground_truth_difference :-
findall(Diff,(tunable_fact(FactID,GroundTruth),
\+continuous_fact(FactID),
\+ var(GroundTruth),
array_element(factprob,FactID,Prob),
Diff is abs(GroundTruth-Prob)),AllDiffs),
(
AllDiffs==[]
->
(
MinDiff=0.0,
MaxDiff=0.0,
DiffMean=0.0
) ;
(
length(AllDiffs,Len),
sum_list(AllDiffs,AllDiffsSum),
min_list(AllDiffs,MinDiff),
max_list(AllDiffs,MaxDiff),
DiffMean is AllDiffsSum/Len
)
),
logger_set_variable(ground_truth_diff,DiffMean),
logger_set_variable(ground_truth_mindiff,MinDiff),
logger_set_variable(ground_truth_maxdiff,MaxDiff).
%========================================================================
%=
%=
%========================================================================
write_probabilities_file :-
current_iteration(Iteration),
create_bdd_input_file_name(Iteration,Probabilities_File),
open(Probabilities_File,'write',Handle),
forall(get_fact_probability(ID,_),
(
array_element(factprob,ID,Prob),
(
non_ground_fact(ID)
->
format(Handle,'@x~q_*~n~15e~n1~nx~q~N',[ID,Prob,ID]);
format(Handle,'@x~q~n~15e~n1~nx~q~N',[ID,Prob,ID])
)
)
),
close(Handle).
%========================================================================
%=
%=
%=
%========================================================================
update_query(QueryID,ClusterID ,Method,Command,PID,Output_File_Name) :-
current_iteration(Iteration),
create_bdd_input_file_name(Iteration,Input_File_Name),
create_bdd_output_file_name(QueryID,ClusterID,Iteration,Output_File_Name),
create_bdd_file_name(QueryID,ClusterID,BDD_File_Name),
problog_dir(PD),
concat_path_with_filename(PD,'problogbdd_lfi',Absolute_Name),
atomic_concat([Absolute_Name,
' -i "', Input_File_Name, '"',
' -l "', BDD_File_Name, '"',
' -m ',Method,
' -id ', QueryID,
' > "',
Output_File_Name,
'"'],Command),
exec(Command,[std,std,std],PID).
update_query_wait(QueryID,_ClusterID,Count,Symbol,Command,PID,OutputFilename,BDD_Probability) :-
wait(PID,Error),
format_learning(4,'~w',[Symbol]),
(
Error \= 0
->
(
format(user_error,'SimpleCUDD stopped with error code ~q.~n', [Error]),
format(user_error,'The command was~n ~q~n',[Command]),
throw(bdd_error(QueryID,Error))
);
true
),
once(my_load_allinone(OutputFilename,QueryID,Count,BDD_Probability)),
problog_flag(retain_bdd_output,Retain_BDD_Output),
(
Retain_BDD_Output==true
->
true;
delete_file_silently(OutputFilename)
).
%========================================================================
%=
%=
%=
%========================================================================
my_load_allinone(File,QueryID,Count,BDD_Probability) :-
open(File,'read',Handle),
read(Handle,Atom),
once(my_load_intern_allinone(Atom,Handle,QueryID,Count,error,BDD_Probability)),
!,
close(Handle).
my_load_allinone(File,QueryID,_,_,_,_) :-
format(user_error,'Error at ~q.~2n',[my_load(File,QueryID)]),
throw(error(my_load(File,QueryID))).
my_load_intern_allinone(end_of_file,_,_,_,BDD_Probability,BDD_Probability) :-
!.
my_load_intern_allinone(query_probability(QueryID,Prob),Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
!,
(
Old_BDD_Probability==error
->
true;
throw(error(bdd_output_contains_prob_twice(query_probability(QueryID,Prob))))
),
Prob2 is Prob*Count, % this is will throw an exception if simplecudd delivers non-number garbage
read(Handle,X),
my_load_intern_allinone(X,Handle,QueryID,Count,Prob2,BDD_Probability).
my_load_intern_allinone(ec(QueryID,VarName,Value),Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
!,
split_atom_name(VarName,FactID,_GroundID),
MultValue is Value*Count,
add_to_array_element(factprob_temp,FactID,MultValue,_NewEC),
add_to_array_element(factusage,FactID,Count,_NewDiv),
read(Handle,X),
my_load_intern_allinone(X,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability).
my_load_intern_allinone(X,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability) :-
format(user_error,'Unknown atom ~q in results file.~n',[X]),
read(Handle,X2),
my_load_intern_allinone(X2,Handle,QueryID,Count,Old_BDD_Probability,BDD_Probability).
%========================================================================
%= Perform one iteration of EM
%========================================================================
my_reset_static_array(Name) :-
%%% DELETE ME AFTER VITOR FIXED HIS BUG
static_array_properties(Name,Size,Type),
LastPos is Size-1,
(
Type==int
->
forall(between(0,LastPos,Pos), update_array(Name,Pos,0))
;
Type==float
->
forall(between(0,LastPos,Pos), update_array(Name,Pos,0.0))
;
fail
).
em_one_iteration :-
write_probabilities_file,
my_reset_static_array(factprob_temp),
my_reset_static_array(factusage),
current_iteration(Iteration),
create_training_predictions_file_name(Iteration,Name),
open(Name,'write',Handle),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start calculate new values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% process known_count information
bb_put(dummy,0.0),
(
% go over all tunable facts and get their current probability
tunable_fact(FactID,_),
array_element(factprob,FactID,P),
% get known counts
array_element(known_count_true_training,FactID,KK_True),
array_element(known_count_false_training,FactID,KK_False),
KK_Sum is KK_True+KK_False,
KK_Sum>0,
% add counts
add_to_array_element(factprob_temp,FactID,KK_True,_NewValue),
add_to_array_element(factusage,FactID,KK_Sum,_NewCount),
% for LLH training set
(
KK_True>0
->
Part1 is KK_True*log(P);
Part1 is 0.0
),
(
KK_False>0
->
LProb is Part1 + KK_False*log(1-P);
LProb is Part1
),
bb_get(dummy,Old),
New is Old+LProb,
bb_put(dummy,New),
fail;
true
),
bb_delete(dummy,LLH_From_True_BDDs),
format(Handle,'propagatedprob(~15e).~n',[LLH_From_True_BDDs]),
training_set_cluster_list(AllCluster),
problog_flag(parallel_processes,Parallel_Processes),
evaluate_bdds(AllCluster,Handle,Parallel_Processes,'e','.',LLH_From_True_BDDs,LLH),
logger_set_variable(llh_training_set,LLH),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% stop calculate new values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
format_learning(2,'~n',[]),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start copy new values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
problog_flag(pc_numerator,Pseudo_Counts_Numerator),
problog_flag(pc_denominator,Pseudo_Counts_Denominator),
forall(
(
tunable_fact(FactID,_),
array_element(factusage,FactID,Used),
Used>0 % only update relevant facts
),
(
array_element(factprob_temp,FactID,NewValue),
NewP is (NewValue+ Pseudo_Counts_Numerator) / (Used+Pseudo_Counts_Denominator),
update_array(factprob,FactID,NewP)
)
),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% stop copy new values
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close(Handle).
%========================================================================
%= Call SimpleCUDD for each BDD Cluster script
%= L : a list containing 3-tuples a(QueryID,ClusterID,Count)
%= H : file handle for the log file
%= P : number of parallel SimpleCUDD processes
%= T : type of evaluation, either 'd' or 'e'
%= S : symbol to print after a process finished
%= OldLLH : accumulator for LLH
%= LLH : resulting LLH
%=
%= evaluate_bdds(+L,+H,+P,+T,+S,+OldLLH,-LLH)
%========================================================================
evaluate_bdds([],_,_,_,_,LLH,LLH).
evaluate_bdds([H|T],Handle,Parallel_Processes,Type,Symbol,OldLLH,LLH) :-
once(slice_n([H|T],Parallel_Processes,ForNow,Later)),
logger_start_timer(bdd_evaluation),
once(evaluate_bdds_start(ForNow,Type,ForNow_Jobs)),
once(evaluate_bdds_stop(ForNow_Jobs,Handle,Symbol,OldLLH,NewLLH)),
logger_stop_timer(bdd_evaluation),
evaluate_bdds(Later,Handle,Parallel_Processes,Type,Symbol,NewLLH,LLH).
evaluate_bdds_start([],_,[]).
evaluate_bdds_start([a(QueryID,ClusterID,Count)|T],Type,[job(QueryID,ClusterID,Count,Command,PID,OutputFilename)|T2]) :-
once(update_query(QueryID,ClusterID,Type,Command,PID,OutputFilename)),
evaluate_bdds_start(T,Type,T2).
evaluate_bdds_stop([],_,_,LLH,LLH).
evaluate_bdds_stop([job(ID,ClusterID,Count,Command,PID,OutputFilename)|T],Handle,Symbol,OldLLH,LLH) :-
once(update_query_wait(ID,ClusterID,Count,Symbol,Command,PID,OutputFilename,BDD_Prob)),
format(Handle,'bdd_prob(~w,~w,~15e). % Count=~w~n',[ID,ClusterID,BDD_Prob,Count]),
catch(NewLLH is OldLLH + Count*log(BDD_Prob),_Exception,NewLLH is 0.0/0.0),
evaluate_bdds_stop(T,Handle,Symbol,NewLLH,LLH).
%========================================================================
%=
%=
%========================================================================
%========================================================================
%= initialize the logger module and set the flags for learning
%= don't change anything here! use set_learning_flag/2 instead
%========================================================================
init_flags :-
prolog_file_name('queries',Queries_Folder), % get absolute file name for './queries'
prolog_file_name('output',Output_Folder), % get absolute file name for './output'
problog_define_flag(bdd_directory, problog_flag_validate_directory, 'directory for BDD scripts', Queries_Folder,learning_general),
problog_define_flag(output_directory, problog_flag_validate_directory, 'directory for logfiles etc', Output_Folder,learning_general,flags:learning_output_dir_handler),
problog_define_flag(retain_bdd_output,problog_flag_validate_boolean,'Keep output files from BDD tool',false,learning_general),
problog_define_flag(log_frequency, problog_flag_validate_posint, 'log results every nth iteration', 1, learning_general),
problog_define_flag(reuse_initialized_bdds,problog_flag_validate_boolean, 'Reuse BDDs from previous runs',false, learning_general),
problog_define_flag(pc_numerator,problog_flag_validate_in_interval_right_open([0.0,+inf]),'Add X to numerator (Pseudocounts)',0.0,learning_general),
problog_define_flag(pc_denominator,problog_flag_validate_in_interval_right_open([0.0,+inf]),'Add X to denominator (Pseudocounts)',0.0,learning_general),
problog_define_flag(parallel_processes,problog_flag_validate_posint,'Number of parallel BDD processes',8,learning_general),
problog_define_flag(cluster_bdds,problog_flag_validate_boolean,'Cluster similar BDDs',true,learning_general).
init_logger :-
logger_define_variable(iteration, int),
logger_define_variable(duration,time),
logger_define_variable(llh_training_set,float),
logger_define_variable(llh_test_set,float),
logger_define_variable(bdd_evaluation,time),
logger_define_variable(ground_truth_diff,float),
logger_define_variable(ground_truth_mindiff,float),
logger_define_variable(ground_truth_maxdiff,float),
logger_define_variable(train_bdd_script_generation,time),
logger_define_variable(train_bdd_script_generation_grounding,time),
logger_define_variable(train_bdd_script_generation_completion,time),
logger_define_variable(train_bdd_script_generation_propagation,time),
logger_define_variable(train_bdd_script_generation_splitting,time),
logger_define_variable(train_bdd_script_generation_active_ground_atoms,int),
logger_define_variable(train_bdd_script_generation_propagated_ground_atoms,int),
logger_define_variable(test_bdd_script_generation,time),
logger_define_variable(test_bdd_script_generation_grounding,time),
logger_define_variable(test_bdd_script_generation_completion,time),
logger_define_variable(test_bdd_script_generation_propagation,time),
logger_define_variable(test_bdd_script_generation_splitting,time),
logger_define_variable(test_bdd_script_generation_active_ground_atoms,int),
logger_define_variable(test_bdd_script_generation_propagated_ground_atoms,int).
:- initialization(init_flags).
:- initialization(init_logger).
|