/usr/share/pyshared/qiime/group.py is in qiime 1.8.0+dfsg-4ubuntu1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | #!/usr/bin/env python
"""This module contains functions useful for obtaining groupings."""
__author__ = "Jai Ram Rideout"
__copyright__ = "Copyright 2011, The QIIME project"
__credits__ = ["Jai Ram Rideout",
"Greg Caporaso",
"Jeremy Widmann"]
__license__ = "GPL"
__version__ = "1.8.0"
__maintainer__ = "Jai Ram Rideout"
__email__ = "jai.rideout@gmail.com"
from collections import defaultdict
from numpy import array
from qiime.pycogent_backports.test import is_symmetric_and_hollow
from qiime.parse import group_by_field
def get_grouped_distances(dist_matrix_header, dist_matrix, mapping_header,
mapping, field, within=True,
suppress_symmetry_and_hollowness_check=False):
"""Returns a list of distance groupings for the specified field.
The return value is a list that contains tuples of three elements: the
first two elements are the field values being compared, and the third
element is a list of the distances.
WARNING: Only symmetric, hollow distance matrices may be used as input.
Asymmetric distance matrices, such as those obtained by the UniFrac Gain
metric (i.e. beta_diversity.py -m unifrac_g), should not be used as input.
Arguments:
- dist_matrix_header: The distance matrix header, obtained from
parse.parse_distmat()
- dist_matrix: The distance matrix, obtained from
parse.parse_distmat().
- mapping_header: The mapping file header, obtained from
parse.parse_mapping_file()
- mapping: The mapping file's contents, obtained from
parse.parse_mapping_file()
- field: A field in the mapping file to do the grouping on.
- within: If True, distances are grouped within a field value. If
False, distances are grouped between field values.
- suppress_symmetry_and_hollowness_check: By default, the input
distance matrix will be checked for symmetry and hollowness. It is
recommended to leave this check in place for safety, as the check
is fairly fast. However, if you *know* you have a symmetric and
hollow distance matrix, you can disable this check for small
performance gains on extremely large distance matrices
"""
_validate_input(dist_matrix_header, dist_matrix, mapping_header, mapping,
field)
mapping_data = [mapping_header]
mapping_data.extend(mapping)
groups = group_by_field(mapping_data, field)
return _get_groupings(dist_matrix_header, dist_matrix, groups, within,
suppress_symmetry_and_hollowness_check)
def get_all_grouped_distances(dist_matrix_header, dist_matrix, mapping_header,
mapping, field, within=True,
suppress_symmetry_and_hollowness_check=False):
"""Returns a list of distances for either samples within each of the
field values or between each of the field values for the specified field.
WARNING: Only symmetric, hollow distance matrices may be used as input.
Asymmetric distance matrices, such as those obtained by the UniFrac Gain
metric (i.e. beta_diversity.py -m unifrac_g), should not be used as input.
Arguments:
- dist_matrix_header: The distance matrix header, obtained from
parse.parse_distmat()
- dist_matrix: The distance matrix, obtained from
parse.parse_distmat().
- mapping_header: The mapping file header, obtained from
parse.parse_mapping_file()
- mapping: The mapping file's contents, obtained from
parse.parse_mapping_file()
- field: A field in the mapping file to do the grouping on.
- within: If True, distances are grouped within a field value. If
False, distances are grouped between field values.
- suppress_symmetry_and_hollowness_check: By default, the input
distance matrix will be checked for symmetry and hollowness. It is
recommended to leave this check in place for safety, as the check
is fairly fast. However, if you *know* you have a symmetric and
hollow distance matrix, you can disable this check for small
performance gains on extremely large distance matrices
"""
distances = get_grouped_distances(dist_matrix_header, dist_matrix,
mapping_header, mapping, field, within,
suppress_symmetry_and_hollowness_check)
results = []
for group in distances:
for distance in group[2]:
results.append(distance)
return results
def get_field_state_comparisons(dist_matrix_header, dist_matrix,
mapping_header, mapping, field,
comparison_field_states,
suppress_symmetry_and_hollowness_check=False):
"""Returns a 2D dictionary relating distances between field states.
The 2D dictionary is constructed such that each top-level key is a field
state other than the field states in comparison_field_states. The
second-level key is a field state from comparison_field_states, and the
value at the (key, key) index is a list of distances between those two
field states. Thus, given a field, this function will create comparisons
between the specified comparison_field_states and all other field states.
WARNING: Only symmetric, hollow distance matrices may be used as input.
Asymmetric distance matrices, such as those obtained by the UniFrac Gain
metric (i.e. beta_diversity.py -m unifrac_g), should not be used as input.
Arguments:
- dist_matrix_header: The distance matrix header, obtained from
parse.parse_distmat()
- dist_matrix: The distance matrix, obtained from
parse.parse_distmat().
- mapping_header: The mapping file header, obtained from
parse.parse_mapping_file()
- mapping: The mapping file's contents, obtained from
parse.parse_mapping_file()
- field: A field in the mapping file to do the comparisons on.
- comparison_field_states: A list of strings specifying the field
states to compare to all other field states. Cannot be an empty list.
- suppress_symmetry_and_hollowness_check: By default, the input
distance matrix will be checked for symmetry and hollowness. It is
recommended to leave this check in place for safety, as the check
is fairly fast. However, if you *know* you have a symmetric and
hollow distance matrix, you can disable this check for small
performance gains on extremely large distance matrices
"""
_validate_input(dist_matrix_header, dist_matrix, mapping_header, mapping,
field)
# Make sure each comparison group field state is in the specified field.
if not comparison_field_states:
raise ValueError("You must provide at least one field state to "
"compare to all of the other field states.")
mapping_data = [mapping_header]
mapping_data.extend(mapping)
groups = group_by_field(mapping_data, field)
for field_state in comparison_field_states:
if field_state not in groups:
raise ValueError("The comparison group field state '%s' is not in "
"the provided mapping file's field '%s'."
% (field_state, field))
# Grab a list of all other field states (besides the ones in
# comparison_field_states). These will be the field states that the states
# in comparison_field_states will be compared against.
field_states = [group for group in groups.keys()
if group not in comparison_field_states]
# Get between distance groupings for the field of interest.
between_groupings = get_grouped_distances(dist_matrix_header, dist_matrix,
mapping_header, mapping, field, within=False,
suppress_symmetry_and_hollowness_check=\
suppress_symmetry_and_hollowness_check)
# Build up our 2D dictionary giving the distances between a field state and
# a comparison group field state by filtering out the between_groupings
# list to include only the comparisons that we want.
result = {}
for field_state in field_states:
result[field_state] = {}
for comp_field_state in comparison_field_states:
result[field_state][comp_field_state] = []
for group in between_groupings:
if ((group[0] == field_state or group[1] == field_state)
and (group[0] == comp_field_state or
group[1] == comp_field_state)):
# We've found a group of distances between our comparison
# field state and the current field state, so keep the
# data.
result[field_state][comp_field_state] = group[2]
return result
def get_ordered_coordinates(coordinate_header,
coordinate_matrix,
order,
strict=False):
""" Return coordinate vectors in order
coordinate_header: ids corresponding to vectors
in coordinate_matrix (element 0 of output of
qiime.parse.parse_coords)
coordinate_matrix: the coordinate vectors (element 1 of
output of qiime.parse.parse_coords)
order: ordered ids from coordinate_header (usually sample
ids) for coordinates that should be extracted
strict: raise an error if an id from order is not present
in coordinate_header (default: that id is ignored)
The output of this function will be a tuple of the coordinate
vectors corresponding to each id in order, and the id order:
(ordered_coordinates, ordered_ids)
Note that the output order can be a subset of the input order
if some ids from order are not present in coordinate_header
and strict == False.
This function can be used in a way analogous to
get_adjacent_distances to get a set of coordinates that
might be connected by a line, for example.
"""
ordered_coordinates = []
ordered_ids = []
for o in order:
try:
coordinate_idx = coordinate_header.index(o)
except ValueError:
if strict:
raise ValueError,\
"ID (%s) is not present in coordinate matrix" % o
else:
pass
else:
ordered_coordinates.append(coordinate_matrix[coordinate_idx])
ordered_ids.append(o)
return ordered_coordinates, ordered_ids
def get_adjacent_distances(dist_matrix_header,
dist_matrix,
sample_ids,
strict=False):
"""Return the distances between the adjacent sample_ids as a list
dist_matrix_header: distance matrix headers, e.g. the output
of qiime.parse.parse_distmat (element 0)
dist_matrix: distance matrix, e.g., the output of
qiime.parse.parse_distmat (element 1)
sample_ids: a list of sample ids
strict: boolean indicating whether to raise ValueError if a
sample_id is not in dm (default: False; sample_ids not in
dm are ignored)
The output of this function will be a list of the distances
between the adjacent sample_ids, and a list of the pair of sample ids
corresponding to each distance. This could subsequently be used, for
example, to plot unifrac distances between days in a timeseries, as
d1 to d2, d2 to d3, d3 to d4, and so on. The list of pairs of sample
ids are useful primarily in labeling axes when strict=False
WARNING: Only symmetric, hollow distance matrices may be used as input.
Asymmetric distance matrices, such as those obtained by the UniFrac Gain
metric (i.e. beta_diversity.py -m unifrac_g), should not be used as input.
"""
filtered_idx = []
filtered_sids = []
for sid in sample_ids:
try:
idx = dist_matrix_header.index(sid)
except ValueError:
if strict:
raise ValueError,\
"Sample ID (%s) is not present in distance matrix" % sid
else:
pass
else:
filtered_idx.append(idx)
filtered_sids.append(sid)
if len(filtered_idx) < 2:
raise ValueError, \
("At least two of your sample_ids must be present in the"
" distance matrix. %d are present." % len(filtered_idx))
distance_results = []
header_results = []
for i in range(len(filtered_idx) - 1):
distance_results.append(
dist_matrix[filtered_idx[i]][filtered_idx[i+1]])
header_results.append(
(filtered_sids[i], filtered_sids[i+1]))
return distance_results, header_results
def _validate_input(dist_matrix_header, dist_matrix, mapping_header, mapping,
field):
"""Validates the input data to make sure it can be used and makes sense.
The headers, distance matrix, and mapping input should be iterable, and all
data should not be None. The field must exist in the mapping header.
"""
if (dist_matrix_header is None or dist_matrix is None or mapping_header is
None or mapping is None or field is None):
raise ValueError("The input(s) cannot be 'None'.")
# Make sure the appropriate input is iterable.
for input_arg in (dist_matrix_header, dist_matrix, mapping_header,
mapping):
try:
iter(input_arg)
except:
raise ValueError("The headers, distance matrix, and mapping data "
"must be iterable.")
# The field must be a string.
if not isinstance(field, str):
raise ValueError("The field must be a string.")
# Make sure the field is in the mapping header.
if field not in mapping_header:
raise ValueError("The field '%s' is not in the mapping file header."
% field)
def _get_indices(input_items, wanted_items):
"""Returns indices of the wanted items in the input items if present.
input_items must be iterable, and wanted_items may be either a single value
or a list. The return value will always be a list of indices, and an empty
list if none were found. If wanted_items is a single string, it is treated
as a scalar, not an iterable.
"""
# Note: Some of this code is taken from Jeremy Widmann's
# get_valid_indices() function, part of make_distance_histograms.py.
try:
iter(input_items)
except:
raise ValueError("The input_items to search must be iterable.")
try:
len(wanted_items)
except:
# We have a scalar value, so put it in a list.
wanted_items = [wanted_items]
if isinstance(wanted_items, basestring):
wanted_items = [wanted_items]
return [input_items.index(item)
for item in wanted_items if item in input_items]
def _get_groupings(dist_matrix_header, dist_matrix, groups, within=True,
suppress_symmetry_and_hollowness_check=False):
"""Returns a list of distance groupings.
The return value is a list that contains tuples of three elements: the
first two elements are the field values being compared, and the third
element is a list of the distances.
WARNING: Only symmetric, hollow distance matrices may be used as input.
Asymmetric distance matrices, such as those obtained by the UniFrac Gain
metric (i.e. beta_diversity.py -m unifrac_g), should not be used as input.
Arguments:
- dist_matrix_header: The distance matrix header.
- dist_matrix: The distance matrix.
- groups: A dictionary mapping field value to sample IDs, obtained by
calling group_by_field().
- within: If True, distances are grouped within a field value. If
False, distances are grouped between field values.
- suppress_symmetry_and_hollowness_check: By default, the input
distance matrix will be checked for symmetry and hollowness. It is
recommended to leave this check in place for safety, as the check
is fairly fast. However, if you *know* you have a symmetric and
hollow distance matrix, you can disable this check for small
performance gains on extremely large distance matrices
If within is True, the zeros along the diagonal of the distance matrix are
omitted.
"""
# Note: Much of this code is taken from Jeremy Widmann's
# distances_by_groups() function, part of make_distance_histograms.py.
if not suppress_symmetry_and_hollowness_check:
if not is_symmetric_and_hollow(dist_matrix):
raise ValueError("The distance matrix must be symmetric and "
"hollow.")
result = []
group_items = groups.items()
for i, (row_group, row_ids) in enumerate(group_items):
row_indices = _get_indices(dist_matrix_header, row_ids)
if within:
# Handle the case where indices are the same so we need to omit
# the diagonal.
block = dist_matrix[row_indices][:,row_indices]
size = len(row_indices)
indices = []
for i in range(size):
for j in range(i,size):
if i != j:
indices.append(block[i][j])
if indices:
result.append((row_group, row_group, indices))
else:
# Handle the case where indices are separate: just return blocks.
for j in range(i+1, len(groups)):
col_group, col_ids = group_items[j]
col_indices = _get_indices(dist_matrix_header, col_ids)
vals = dist_matrix[row_indices][:,col_indices]
# Flatten the array into a single-level list.
vals = map(None, vals.flat)
if vals:
result.append((row_group, col_group, vals))
return result
def extract_per_individual_states_from_sample_metadata(
sample_metadata,
state_category,
state_values,
individual_identifier_category,
filter_missing_data=True):
"""
sample_metadata : 2d dictionary mapping sample ids to metadata (as
returned from qiime.parse.parse_mapping_file_to_dict)
state_category: metadata category name describing state of interest
(usually something like 'TreatmentState') as a string
state_values: ordered list of values of interest in the state_category
metadata entry (usually something like ['PreTreatment','PostTreatment'])
individual_identifier_category: metadata category name describing the
individual (usually something like 'PersonalID') as a string
filter_missing_data: if True, an individual is excluded
from the result object if any of it's values are None. This can occur
when there is no sample for one or more of the state values for an
individual. This is True by default.
returns {'individual-identifier':
[sample-id-at-state-value1,
sample-id-at-state-value2,
sample-id-at-state-value3,
...],
...
}
"""
# prep the result object, which will be a dict of lists
len_state_values = len(state_values)
def inner_dict_constructor():
return [None] * len_state_values
results = defaultdict(inner_dict_constructor)
for sample_id, metadata in sample_metadata.items():
try:
individual_id = metadata[individual_identifier_category]
except KeyError:
raise KeyError, \
"%s is not a sample metadata category." %\
individual_identifier_category
try:
state_value = metadata[state_category]
except KeyError:
raise KeyError, \
"%s is not a sample metadata category." %\
state_category
try:
state_index = state_values.index(state_value)
except ValueError:
# hit a state that is in the mapping file but not in
# state_values - this is silently ignored
continue
results[individual_id][state_index] = sample_id
if filter_missing_data:
# delete individual results if sample ids corresponding to
# any of the states are missing
for individual_id, sample_ids in results.items():
if None in sample_ids:
del results[individual_id]
return results
def extract_per_individual_state_metadatum_from_sample_metadata(
sample_metadata,
state_category,
state_values,
individual_identifier_category,
metadata_category,
process_f=float):
"""
sample_metadata : 2d dictionary mapping sample ids to metadata (as
returned from qiime.parse.parse_mapping_file_to_dict)
state_category: metadata category name describing state of interest
(usually something like 'TreatmentState') as a string
state_values: ordered list of values of interest in the state_category
metadata entry (usually something like ['PreTreatment','PostTreatment'])
individual_identifier_category: metadata category name describing the
individual (usually something like 'PersonalID') as a string
metadata_category: metadata category to extract from sample_metadata
process_f: function to apply to metadata values (default: float)
returns {'individual-identifier':
[state-1-metadata-value,
state-2-metadata-value,
...],
...
}
"""
per_individual_states = extract_per_individual_states_from_sample_metadata(
sample_metadata,
state_category,
state_values,
individual_identifier_category,
filter_missing_data=True)
results = {}
for individual_id, sample_ids in per_individual_states.items():
per_state_metadata_values = []
for sample_id in sample_ids:
try:
sample_metadata_value = sample_metadata[sample_id][metadata_category]
except KeyError:
raise KeyError, \
"%s is not a sample metadata category." % metadata_category
try:
v = process_f(sample_metadata_value)
except ValueError, e:
v = None
per_state_metadata_values.append(v)
results[individual_id] = per_state_metadata_values
return results
def extract_per_individual_state_metadata_from_sample_metadata(
sample_metadata,
state_category,
state_values,
individual_identifier_category,
metadata_categories,
process_f=float):
"""
sample_metadata : 2d dictionary mapping sample ids to metadata (as
returned from qiime.parse.parse_mapping_file_to_dict)
state_category: metadata category name describing state of interest
(usually something like 'TreatmentState') as a string
state_values: ordered list of values of interest in the state_category
metadata entry (usually something like ['PreTreatment','PostTreatment'])
individual_identifier_category: metadata category name describing the
individual (usually something like 'PersonalID') as a string
metadata_categories: metadata categories to extract from sample_metadata
process_f: function to apply to metadata values (default: float)
returns {'metadata-category-1':
{'individual-identifier-1':
[difference-in-metadata-value-bw-states-2-and-1,
difference-in-metadata-value-bw-states-3-and-2,
...],
'individual-identifier-2:
[difference-in-metadata-value-bw-states-2-and-1,
difference-in-metadata-value-bw-states-3-and-2,
...],
}
...
}
"""
results = {}
for metadata_category in metadata_categories:
results[metadata_category] = \
extract_per_individual_state_metadatum_from_sample_metadata(
sample_metadata,
state_category,
state_values,
individual_identifier_category,
metadata_category,
process_f)
return results
def extract_per_individual_state_metadata_from_sample_metadata_and_biom(
sample_metadata,
biom_table,
state_category,
state_values,
individual_identifier_category,
observation_ids=None):
"""
sample_metadata : 2d dictionary mapping sample ids to metadata (as
returned from qiime.parse.parse_mapping_file_to_dict)
biom_table: biom table object containing observation counts for
samples in sample_metadata
state_category: metadata category name describing state of interest
(usually something like 'TreatmentState') as a string
state_values: ordered list of values of interest in the state_category
metadata entry (usually something like ['PreTreatment','PostTreatment'])
individual_identifier_category: metadata category name describing the
individual (usually something like 'PersonalID') as a string
observation_ids: observations (usually OTUs) to extract from biom_table
(default is all)
returns {'otu1':
{'individual-identifier-1:
[difference-in-otu1-abundance-bw-states-2-and-1,
difference-in-otu1-abundance-bw-states-3-and-2,
...],
'individual-identifier-2:
[difference-in-otu1-abundance-bw-states-2-and-1,
difference-in-otu1-abundance-bw-states-3-and-2,
...],
}
...
}
"""
per_individual_states = extract_per_individual_states_from_sample_metadata(
sample_metadata,
state_category,
state_values,
individual_identifier_category,
filter_missing_data=True)
results = {}
if observation_ids is None:
observation_ids = biom_table.ObservationIds
for observation_id in observation_ids:
observation_data = biom_table.observationData(observation_id)
results[observation_id] = {}
for individual_id, sample_ids in per_individual_states.items():
per_state_metadata_values = []
for sample_id in sample_ids:
sample_index = biom_table.getSampleIndex(sample_id)
per_state_metadata_values.append(observation_data[sample_index])
results[observation_id][individual_id] = per_state_metadata_values
return results
|