/usr/share/ompl/demos/GeometricCarPlanning.cpp is in ompl-demos 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Mark Moll */
#include <ompl/base/spaces/DubinsStateSpace.h>
#include <ompl/base/spaces/ReedsSheppStateSpace.h>
#include <ompl/base/ScopedState.h>
#include <ompl/geometric/SimpleSetup.h>
#include <boost/program_options.hpp>
namespace ob = ompl::base;
namespace og = ompl::geometric;
namespace po = boost::program_options;
// The easy problem is the standard narrow passage problem: two big open
// spaces connected by a narrow passage. The hard problem is essentially
// one long narrow passage with the robot facing towards the long walls
// in both the start and goal configurations.
bool isStateValidEasy(const ob::SpaceInformation *si, const ob::State *state)
{
const ob::SE2StateSpace::StateType *s = state->as<ob::SE2StateSpace::StateType>();
double x=s->getX(), y=s->getY();
return si->satisfiesBounds(s) && (x<5 || x>13 || (y>8.5 && y<9.5));
}
bool isStateValidHard(const ob::SpaceInformation *si, const ob::State *state)
{
return si->satisfiesBounds(state);
}
void plan(ob::StateSpacePtr space, bool easy)
{
ob::ScopedState<> start(space), goal(space);
ob::RealVectorBounds bounds(2);
bounds.setLow(0);
if (easy)
bounds.setHigh(18);
else
{
bounds.high[0] = 6;
bounds.high[1] = .6;
}
space->as<ob::SE2StateSpace>()->setBounds(bounds);
// define a simple setup class
og::SimpleSetup ss(space);
// set state validity checking for this space
ob::SpaceInformationPtr si(ss.getSpaceInformation());
ss.setStateValidityChecker(boost::bind(
easy ? &isStateValidEasy : &isStateValidHard, si.get(), _1));
// set the start and goal states
if (easy)
{
start[0] = start[1] = 1.; start[2] = 0.;
goal[0] = goal[1] = 17; goal[2] = -.99*boost::math::constants::pi<double>();
}
else
{
start[0] = start[1] = .5; start[2] = .5*boost::math::constants::pi<double>();;
goal[0] = 5.5; goal[1] = .5; goal[2] = .5*boost::math::constants::pi<double>();
}
ss.setStartAndGoalStates(start, goal);
// this call is optional, but we put it in to get more output information
ss.getSpaceInformation()->setStateValidityCheckingResolution(0.005);
ss.setup();
ss.print();
// attempt to solve the problem within 30 seconds of planning time
ob::PlannerStatus solved = ss.solve(30.0);
if (solved)
{
std::vector<double> reals;
std::cout << "Found solution:" << std::endl;
ss.simplifySolution();
og::PathGeometric path = ss.getSolutionPath();
path.interpolate(1000);
path.printAsMatrix(std::cout);
}
else
std::cout << "No solution found" << std::endl;
}
void printTrajectory(ob::StateSpacePtr space, const std::vector<double>& pt)
{
if (pt.size()!=3) throw ompl::Exception("3 arguments required for trajectory option");
const unsigned int num_pts = 50;
ob::ScopedState<> from(space), to(space), s(space);
std::vector<double> reals;
from[0] = from[1] = from[2] = 0.;
to[0] = pt[0];
to[1] = pt[1];
to[2] = pt[2];
std::cout << "distance: " << space->distance(from(), to()) << "\npath:\n";
for (unsigned int i=0; i<=num_pts; ++i)
{
space->interpolate(from(), to(), (double)i/num_pts, s());
reals = s.reals();
std::cout << "path " << reals[0] << ' ' << reals[1] << ' ' << reals[2] << ' ' << std::endl;
}
}
void printDistanceGrid(ob::StateSpacePtr space)
{
// print the distance for (x,y,theta) for all points in a 3D grid in SE(2)
// over [-5,5) x [-5, 5) x [-pi,pi).
//
// The output should be redirected to a file, say, distance.txt. This
// can then be read and plotted in Matlab like so:
// x = reshape(load('distance.txt'),200,200,200);
// for i=1:200,
// contourf(squeeze(x(i,:,:)),30);
// axis equal; axis tight; colorbar; pause;
// end;
const unsigned int num_pts = 200;
ob::ScopedState<> from(space), to(space);
from[0] = from[1] = from[2] = 0.;
for (unsigned int i=0; i<num_pts; ++i)
for (unsigned int j=0; j<num_pts; ++j)
for (unsigned int k=0; k<num_pts; ++k)
{
to[0] = 5. * (2. * (double)i/num_pts - 1.);
to[1] = 5. * (2. * (double)j/num_pts - 1.);
to[2] = boost::math::constants::pi<double>() * (2. * (double)k/num_pts - 1.);
std::cout << space->distance(from(), to()) << '\n';
}
}
int main(int argc, char* argv[])
{
try
{
po::options_description desc("Options");
desc.add_options()
("help", "show help message")
("dubins", "use Dubins state space")
("dubinssym", "use symmetrized Dubins state space")
("reedsshepp", "use Reeds-Shepp state space (default)")
("easyplan", "solve easy planning problem and print path")
("hardplan", "solve hard planning problem and print path")
("trajectory", po::value<std::vector<double > >()->multitoken(),
"print trajectory from (0,0,0) to a user-specified x, y, and theta")
("distance", "print distance grid")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc,
po::command_line_style::unix_style ^ po::command_line_style::allow_short), vm);
po::notify(vm);
if (vm.count("help") || argc==1)
{
std::cout << desc << "\n";
return 1;
}
ob::StateSpacePtr space(new ob::ReedsSheppStateSpace);
if (vm.count("dubins"))
space = ob::StateSpacePtr(new ob::DubinsStateSpace);
if (vm.count("dubinssym"))
space = ob::StateSpacePtr(new ob::DubinsStateSpace(1., true));
if (vm.count("easyplan"))
plan(space, true);
if (vm.count("hardplan"))
plan(space, false);
if (vm.count("trajectory"))
printTrajectory(space, vm["trajectory"].as<std::vector<double> >());
if (vm.count("distance"))
printDistanceGrid(space);
}
catch(std::exception& e) {
std::cerr << "error: " << e.what() << "\n";
return 1;
}
catch(...) {
std::cerr << "Exception of unknown type!\n";
}
return 0;
}
|