/usr/share/ompl/demos/LTLWithTriangulation.cpp is in ompl-demos 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2013, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Matt Maly */
#include <ompl/control/SpaceInformation.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/control/spaces/RealVectorControlSpace.h>
#include <ompl/control/SimpleSetup.h>
#include <ompl/config.h>
#include <iostream>
#include <vector>
#include <ompl/extensions/triangle/PropositionalTriangularDecomposition.h>
#include <ompl/control/planners/ltl/PropositionalDecomposition.h>
#include <ompl/control/planners/ltl/Automaton.h>
#include <ompl/control/planners/ltl/ProductGraph.h>
#include <ompl/control/planners/ltl/LTLPlanner.h>
#include <ompl/control/planners/ltl/LTLProblemDefinition.h>
namespace ob = ompl::base;
namespace oc = ompl::control;
typedef oc::PropositionalTriangularDecomposition::Polygon Polygon;
typedef oc::PropositionalTriangularDecomposition::Vertex Vertex;
// a decomposition is only needed for SyclopRRT and SyclopEST
// use TriangularDecomp
class MyDecomposition : public oc::PropositionalTriangularDecomposition
{
public:
MyDecomposition(const ob::RealVectorBounds& bounds)
: oc::PropositionalTriangularDecomposition(bounds) { }
virtual ~MyDecomposition() { }
virtual void project(const ob::State* s, std::vector<double>& coord) const
{
coord.resize(2);
coord[0] = s->as<ob::SE2StateSpace::StateType>()->getX();
coord[1] = s->as<ob::SE2StateSpace::StateType>()->getY();
}
virtual void sampleFullState(const ob::StateSamplerPtr& sampler, const std::vector<double>& coord, ob::State* s) const
{
sampler->sampleUniform(s);
ob::SE2StateSpace::StateType* ws = s->as<ob::SE2StateSpace::StateType>();
ws->setXY(coord[0], coord[1]);
}
private:
ompl::RNG rng_;
};
void addObstaclesAndPropositions(oc::PropositionalTriangularDecomposition* decomp)
{
Polygon obstacle(4);
obstacle.pts[0] = Vertex(0.,.9);
obstacle.pts[1] = Vertex(1.1,.9);
obstacle.pts[2] = Vertex(1.1,1.1);
obstacle.pts[3] = Vertex(0.,1.1);
decomp->addHole(obstacle);
Polygon p0(4);
p0.pts[0] = Vertex(.9,.3);
p0.pts[1] = Vertex(1.1,.3);
p0.pts[2] = Vertex(1.1,.5);
p0.pts[3] = Vertex(.9,.5);
decomp->addProposition(p0);
Polygon p1(4);
p1.pts[0] = Vertex(1.5,1.6);
p1.pts[1] = Vertex(1.6,1.6);
p1.pts[2] = Vertex(1.6,1.7);
p1.pts[3] = Vertex(1.5,1.7);
decomp->addProposition(p1);
Polygon p2(4);
p2.pts[0] = Vertex(.2,1.7);
p2.pts[1] = Vertex(.3,1.7);
p2.pts[2] = Vertex(.3,1.8);
p2.pts[3] = Vertex(.2,1.8);
decomp->addProposition(p2);
}
/* Returns whether a point (x,y) is within a given polygon.
We are assuming that the polygon is a axis-aligned rectangle, with vertices stored
in counter-clockwise order, beginning with the bottom-left vertex. */
bool polyContains(const Polygon& poly, double x, double y)
{
return x >= poly.pts[0].x && x <= poly.pts[2].x
&& y >= poly.pts[0].y && y <= poly.pts[2].y;
}
/* Our state validity checker queries the decomposition for its obstacles,
and checks for collisions against them.
This is to prevent us from having to redefine the obstacles in multiple places. */
bool isStateValid(
const oc::SpaceInformation *si,
const oc::PropositionalTriangularDecomposition* decomp,
const ob::State *state)
{
if (!si->satisfiesBounds(state))
return false;
const ob::SE2StateSpace::StateType* se2 = state->as<ob::SE2StateSpace::StateType>();
double x = se2->getX();
double y = se2->getY();
const std::vector<Polygon>& obstacles = decomp->getHoles();
typedef std::vector<Polygon>::const_iterator ObstacleIter;
for (ObstacleIter o = obstacles.begin(); o != obstacles.end(); ++o)
{
if (polyContains(*o, x, y))
return false;
}
return true;
}
void propagate(const ob::State *start, const oc::Control *control, const double duration, ob::State *result)
{
const ob::SE2StateSpace::StateType* se2 = start->as<ob::SE2StateSpace::StateType>();
const oc::RealVectorControlSpace::ControlType* rctrl = control->as<oc::RealVectorControlSpace::ControlType>();
double xout = se2->getX() + rctrl->values[0]*duration*cos(se2->getYaw());
double yout = se2->getY() + rctrl->values[0]*duration*sin(se2->getYaw());
double yawout = se2->getYaw() + rctrl->values[1];
ob::SE2StateSpace::StateType* se2out = result->as<ob::SE2StateSpace::StateType>();
se2out->setXY(xout, yout);
se2out->setYaw(yawout);
ob::SO2StateSpace::StateType* so2out = se2out->as<ob::SO2StateSpace::StateType>(1);
ob::SO2StateSpace SO2;
SO2.enforceBounds (so2out);
}
void plan(void)
{
// construct the state space we are planning in
ob::StateSpacePtr space(new ob::SE2StateSpace());
// set the bounds for the R^2 part of SE(2)
ob::RealVectorBounds bounds(2);
bounds.setLow(0);
bounds.setHigh(2);
space->as<ob::SE2StateSpace>()->setBounds(bounds);
// create triangulation that ignores obstacle and respects propositions
MyDecomposition* ptd = new MyDecomposition(bounds);
// helper method that adds an obstacle, as well as three propositions p0,p1,p2
addObstaclesAndPropositions(ptd);
ptd->setup();
oc::PropositionalDecompositionPtr pd(ptd);
// create a control space
oc::ControlSpacePtr cspace(new oc::RealVectorControlSpace(space, 2));
// set the bounds for the control space
ob::RealVectorBounds cbounds(2);
cbounds.setLow(-.5);
cbounds.setHigh(.5);
cspace->as<oc::RealVectorControlSpace>()->setBounds(cbounds);
oc::SpaceInformationPtr si(new oc::SpaceInformation(space, cspace));
si->setStateValidityChecker(boost::bind(&isStateValid, si.get(), ptd, _1));
si->setStatePropagator(boost::bind(&propagate, _1, _2, _3, _4));
si->setPropagationStepSize(0.025);
//LTL co-safety sequencing formula: visit p2,p0 in that order
std::vector<unsigned int> sequence(2);
sequence[0] = 2;
sequence[1] = 0;
oc::AutomatonPtr cosafety = oc::Automaton::SequenceAutomaton(3, sequence);
//LTL safety avoidance formula: never visit p1
std::vector<unsigned int> toAvoid(1);
toAvoid[0] = 1;
oc::AutomatonPtr safety = oc::Automaton::AvoidanceAutomaton(3, toAvoid);
//construct product graph (propDecomp x A_{cosafety} x A_{safety})
oc::ProductGraphPtr product(new oc::ProductGraph(pd, cosafety, safety));
// LTLSpaceInformation creates a hybrid space of robot state space x product graph.
// It takes the validity checker from SpaceInformation and expands it to one that also
// rejects any hybrid state containing rejecting automaton states.
// It takes the state propagator from SpaceInformation and expands it to one that
// follows continuous propagation with setting the next decomposition region
// and automaton states accordingly.
//
// The robot state space, given by SpaceInformation, is referred to as the "lower space".
oc::LTLSpaceInformationPtr ltlsi(new oc::LTLSpaceInformation(si, product));
// LTLProblemDefinition creates a goal in hybrid space, corresponding to any
// state in which both automata are accepting
oc::LTLProblemDefinitionPtr pdef(new oc::LTLProblemDefinition(ltlsi));
// create a start state
ob::ScopedState<ob::SE2StateSpace> start(space);
start->setX(0.2);
start->setY(0.2);
start->setYaw(0.0);
// addLowerStartState accepts a state in lower space, expands it to its
// corresponding hybrid state (decomposition region containing the state, and
// starting states in both automata), and adds that as an official start state.
pdef->addLowerStartState(start.get());
//LTL planner (input: LTL space information, product automaton)
oc::LTLPlanner* ltlPlanner = new oc::LTLPlanner(ltlsi, product);
ltlPlanner->setProblemDefinition(pdef);
// attempt to solve the problem within thirty seconds of planning time
// considering the above cosafety/safety automata, a solution path is any
// path that visits p2 followed by p0 while avoiding obstacles and avoiding p1.
ob::PlannerStatus solved = ltlPlanner->as<ob::Planner>()->solve(30.0);
if (solved)
{
std::cout << "Found solution:" << std::endl;
// The path returned by LTLProblemDefinition is through hybrid space.
// getLowerSolutionPath() projects it down into the original robot state space
// that we handed to LTLSpaceInformation.
pdef->getLowerSolutionPath()->print(std::cout);
}
else
std::cout << "No solution found" << std::endl;
delete ltlPlanner;
}
int main(int, char **)
{
plan();
return 0;
}
|