This file is indexed.

/usr/share/ompl/demos/OptimalPlanning.cpp is in ompl-demos 1.0.0+ds2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2011, Rice University
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Rice University nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/* Author: Luis G. Torres */

#include <ompl/base/SpaceInformation.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/base/objectives/StateCostIntegralObjective.h>
#include <ompl/base/objectives/MaximizeMinClearanceObjective.h>
#include <ompl/base/spaces/RealVectorStateSpace.h>
#include <ompl/geometric/planners/rrt/RRTstar.h>

#include <fstream>

namespace ob = ompl::base;
namespace og = ompl::geometric;
/// @cond IGNORE
// Our "collision checker". For this demo, our robot's state space
// lies in [0,1]x[0,1], with a circular obstacle of radius 0.25
// centered at (0.5,0.5). Any states lying in this circular region are
// considered "in collision".
class ValidityChecker : public ob::StateValidityChecker
{
public:
    ValidityChecker(const ob::SpaceInformationPtr& si) :
        ob::StateValidityChecker(si) {}

    // Returns whether the given state's position overlaps the
    // circular obstacle
    bool isValid(const ob::State* state) const
    {
        return this->clearance(state) > 0.0;
    }

    // Returns the distance from the given state's position to the
    // boundary of the circular obstacle.
    double clearance(const ob::State* state) const
    {
        // We know we're working with a RealVectorStateSpace in this
        // example, so we downcast state into the specific type.
        const ob::RealVectorStateSpace::StateType* state2D =
            state->as<ob::RealVectorStateSpace::StateType>();

        // Extract the robot's (x,y) position from its state
        double x = state2D->values[0];
        double y = state2D->values[1];

        // Distance formula between two points, offset by the circle's
        // radius
        return sqrt((x-0.5)*(x-0.5) + (y-0.5)*(y-0.5)) - 0.25;
    }
};

ob::OptimizationObjectivePtr getPathLengthObjective(const ob::SpaceInformationPtr& si);

ob::OptimizationObjectivePtr getThresholdPathLengthObj(const ob::SpaceInformationPtr& si);

ob::OptimizationObjectivePtr getClearanceObjective(const ob::SpaceInformationPtr& si);

ob::OptimizationObjectivePtr getBalancedObjective1(const ob::SpaceInformationPtr& si);

ob::OptimizationObjectivePtr getBalancedObjective2(const ob::SpaceInformationPtr& si);

ob::OptimizationObjectivePtr getPathLengthObjWithCostToGo(const ob::SpaceInformationPtr& si);

void plan(int argc, char** argv)
{
    // Construct the robot state space in which we're planning. We're
    // planning in [0,1]x[0,1], a subset of R^2.
    ob::StateSpacePtr space(new ob::RealVectorStateSpace(2));

    // Set the bounds of space to be in [0,1].
    space->as<ob::RealVectorStateSpace>()->setBounds(0.0, 1.0);

    // Construct a space information instance for this state space
    ob::SpaceInformationPtr si(new ob::SpaceInformation(space));

    // Set the object used to check which states in the space are valid
    si->setStateValidityChecker(ob::StateValidityCheckerPtr(new ValidityChecker(si)));

    si->setup();

    // Set our robot's starting state to be the bottom-left corner of
    // the environment, or (0,0).
    ob::ScopedState<> start(space);
    start->as<ob::RealVectorStateSpace::StateType>()->values[0] = 0.0;
    start->as<ob::RealVectorStateSpace::StateType>()->values[1] = 0.0;

    // Set our robot's goal state to be the top-right corner of the
    // environment, or (1,1).
    ob::ScopedState<> goal(space);
    goal->as<ob::RealVectorStateSpace::StateType>()->values[0] = 1.0;
    goal->as<ob::RealVectorStateSpace::StateType>()->values[1] = 1.0;

    // Create a problem instance
    ob::ProblemDefinitionPtr pdef(new ob::ProblemDefinition(si));

    // Set the start and goal states
    pdef->setStartAndGoalStates(start, goal);

    // Since we want to find an optimal plan, we need to define what
    // is optimal with an OptimizationObjective structure. Un-comment
    // exactly one of the following 6 lines to see some examples of
    // optimization objectives.
    pdef->setOptimizationObjective(getPathLengthObjective(si));
    // pdef->setOptimizationObjective(getThresholdPathLengthObj(si));
    // pdef->setOptimizationObjective(getClearanceObjective(si));
    // pdef->setOptimizationObjective(getBalancedObjective1(si));
    // pdef->setOptimizationObjective(getBalancedObjective2(si));
    // pdef->setOptimizationObjective(getPathLengthObjWithCostToGo(si));

    // Construct our optimal planner using the RRTstar algorithm.
    ob::PlannerPtr optimizingPlanner(new og::RRTstar(si));

    // Set the problem instance for our planner to solve
    optimizingPlanner->setProblemDefinition(pdef);
    optimizingPlanner->setup();

    // attempt to solve the planning problem within one second of
    // planning time
    ob::PlannerStatus solved = optimizingPlanner->solve(1.0);

    if (solved)
    {
        // Output the length of the path found
        std::cout
            << "Found solution of path length "
            << pdef->getSolutionPath()->length() << std::endl;

        // If a filename was specified, output the path as a matrix to
        // that file for visualization
        if (argc > 1)
        {
            std::ofstream outFile(argv[1]);
            boost::static_pointer_cast<og::PathGeometric>(pdef->getSolutionPath())->
                printAsMatrix(outFile);
            outFile.close();
        }
    }
    else
        std::cout << "No solution found." << std::endl;
}

int main(int argc, char** argv)
{
    plan(argc, argv);

    return 0;
}

/** Returns a structure representing the optimization objective to use
    for optimal motion planning. This method returns an objective
    which attempts to minimize the length in configuration space of
    computed paths. */
ob::OptimizationObjectivePtr getPathLengthObjective(const ob::SpaceInformationPtr& si)
{
    return ob::OptimizationObjectivePtr(new ob::PathLengthOptimizationObjective(si));
}

/** Returns an optimization objective which attempts to minimize path
    length that is satisfied when a path of length shorter than 1.51
    is found. */
ob::OptimizationObjectivePtr getThresholdPathLengthObj(const ob::SpaceInformationPtr& si)
{
    ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
    obj->setCostThreshold(ob::Cost(1.51));
    return obj;
}

/** Defines an optimization objective which attempts to steer the
    robot away from obstacles. To formulate this objective as a
    minimization of path cost, we can define the cost of a path as a
    summation of the costs of each of the states along the path, where
    each state cost is a function of that state's clearance from
    obstacles.

    The class StateCostIntegralObjective represents objectives as
    summations of state costs, just like we require. All we need to do
    then is inherit from that base class and define our specific state
    cost function by overriding the stateCost() method.
 */
class ClearanceObjective : public ob::StateCostIntegralObjective
{
public:
    ClearanceObjective(const ob::SpaceInformationPtr& si) :
        ob::StateCostIntegralObjective(si, true)
    {
    }

    // Our requirement is to maximize path clearance from obstacles,
    // but we want to represent the objective as a path cost
    // minimization. Therefore, we set each state's cost to be the
    // reciprocal of its clearance, so that as state clearance
    // increases, the state cost decreases.
    ob::Cost stateCost(const ob::State* s) const
    {
        return ob::Cost(1 / si_->getStateValidityChecker()->clearance(s));
    }
};

/** Return an optimization objective which attempts to steer the robot
    away from obstacles. */
ob::OptimizationObjectivePtr getClearanceObjective(const ob::SpaceInformationPtr& si)
{
    return ob::OptimizationObjectivePtr(new ClearanceObjective(si));
}

/** Create an optimization objective which attempts to optimize both
    path length and clearance. We do this by defining our individual
    objectives, then adding them to a MultiOptimizationObjective
    object. This results in an optimization objective where path cost
    is equivalent to adding up each of the individual objectives' path
    costs.

    When adding objectives, we can also optionally specify each
    objective's weighting factor to signify how important it is in
    optimal planning. If no weight is specified, the weight defaults to
    1.0.
*/
ob::OptimizationObjectivePtr getBalancedObjective1(const ob::SpaceInformationPtr& si)
{
    ob::OptimizationObjectivePtr lengthObj(new ob::PathLengthOptimizationObjective(si));
    ob::OptimizationObjectivePtr clearObj(new ClearanceObjective(si));

    ob::MultiOptimizationObjective* opt = new ob::MultiOptimizationObjective(si);
    opt->addObjective(lengthObj, 10.0);
    opt->addObjective(clearObj, 1.0);

    return ob::OptimizationObjectivePtr(opt);
}

/** Create an optimization objective equivalent to the one returned by
    getBalancedObjective1(), but use an alternate syntax.
 */
ob::OptimizationObjectivePtr getBalancedObjective2(const ob::SpaceInformationPtr& si)
{
    ob::OptimizationObjectivePtr lengthObj(new ob::PathLengthOptimizationObjective(si));
    ob::OptimizationObjectivePtr clearObj(new ClearanceObjective(si));

    return 10.0*lengthObj + clearObj;
}

/** Create an optimization objective for minimizing path length, and
    specify a cost-to-go heuristic suitable for this optimal planning
    problem. */
ob::OptimizationObjectivePtr getPathLengthObjWithCostToGo(const ob::SpaceInformationPtr& si)
{
    ob::OptimizationObjectivePtr obj(new ob::PathLengthOptimizationObjective(si));
    obj->setCostToGoHeuristic(&ob::goalRegionCostToGo);
    return obj;
}
/// @endcond