This file is indexed.

/usr/share/ompl/demos/PlannerData.cpp is in ompl-demos 1.0.0+ds2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2012, Rice University
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Rice University nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

/* Author: Ryan Luna, Luis G. Torres */

#include <ompl/base/PlannerData.h>
#include <ompl/base/PlannerDataStorage.h>
#include <ompl/base/PlannerDataGraph.h>
#include <ompl/base/spaces/SE3StateSpace.h>
#include <ompl/base/objectives/PathLengthOptimizationObjective.h>
#include <ompl/geometric/SimpleSetup.h>
#include <ompl/base/goals/GoalState.h>

#include <boost/graph/astar_search.hpp>
#include <iostream>

namespace ob = ompl::base;
namespace og = ompl::geometric;

bool isStateValid(const ob::State *state)
{
    // cast the abstract state type to the type we expect
    const ob::SE3StateSpace::StateType *se3state = state->as<ob::SE3StateSpace::StateType>();

    // extract the first component of the state and cast it to what we expect
    const ob::RealVectorStateSpace::StateType *pos = se3state->as<ob::RealVectorStateSpace::StateType>(0);

    // extract the second component of the state and cast it to what we expect
    const ob::SO3StateSpace::StateType *rot = se3state->as<ob::SO3StateSpace::StateType>(1);

    // check validity of state defined by pos & rot


    // return a value that is always true but uses the two variables we define, so we avoid compiler warnings
    return (const void*)rot != (const void*)pos;
}

void planWithSimpleSetup(void)
{
    // construct the state space we are planning in
    ob::StateSpacePtr space(new ob::SE3StateSpace());

    // set the bounds for the R^3 part of SE(3)
    ob::RealVectorBounds bounds(3);
    bounds.setLow(-10);
    bounds.setHigh(10);

    space->as<ob::SE3StateSpace>()->setBounds(bounds);

    // define a simple setup class
    og::SimpleSetup ss(space);

    // set state validity checking for this space
    ss.setStateValidityChecker(boost::bind(&isStateValid, _1));

    // create a random start state
    ob::ScopedState<> start(space);
    start.random();

    // create a random goal state
    ob::ScopedState<> goal(space);
    goal.random();

    // set the start and goal states
    ss.setStartAndGoalStates(start, goal);

    // this call is optional, but we put it in to get more output information
    ss.setup();
    ss.print();

    // attempt to find an exact solution within five seconds
    if (ss.solve(5.0) == ob::PlannerStatus::EXACT_SOLUTION)
    {
        og::PathGeometric slnPath = ss.getSolutionPath();

        std::cout << std::endl;
        std::cout << "Found solution with " << slnPath.getStateCount() << " states and length " << slnPath.length() << std::endl;
        // print the path to screen
        //slnPath.print(std::cout);

        std::cout << "Writing PlannerData to file './myPlannerData'" << std::endl;
        ob::PlannerData data(ss.getSpaceInformation());
        ss.getPlannerData(data);

        ob::PlannerDataStorage dataStorage;
        dataStorage.store(data, "myPlannerData");
    }
    else
        std::cout << "No solution found" << std::endl;
}

// Used for A* search.  Computes the heuristic distance from vertex v1 to the goal
ob::Cost distanceHeuristic(ob::PlannerData::Graph::Vertex v1,
                           const ob::GoalState* goal,
                           const ob::OptimizationObjective* obj,
                           const boost::property_map<ob::PlannerData::Graph::Type,
                           vertex_type_t>::type& plannerDataVertices)
{
    return ob::Cost(obj->costToGo(plannerDataVertices[v1]->getState(), goal));
}

void readPlannerData(void)
{
    std::cout << std::endl;
    std::cout << "Reading PlannerData from './myPlannerData'" << std::endl;

    // Recreating the space information from the stored planner data instance
    ob::StateSpacePtr space(new ob::SE3StateSpace());
    ob::SpaceInformationPtr si(new ob::SpaceInformation(space));

    ob::PlannerDataStorage dataStorage;
    ob::PlannerData data(si);

    // Loading an instance of PlannerData from disk.
    dataStorage.load("myPlannerData", data);

    // Re-extract the shortest path from the loaded planner data
    if (data.numStartVertices() > 0 && data.numGoalVertices() > 0)
    {
        // Create an optimization objective for optimizing path length in A*
        ob::PathLengthOptimizationObjective opt(si);

        // Computing the weights of all edges based on the state space distance
        // This is not done by default for efficiency
        data.computeEdgeWeights(opt);

        // Getting a handle to the raw Boost.Graph data
        ob::PlannerData::Graph::Type& graph = data.toBoostGraph();

        // Now we can apply any Boost.Graph algorithm.  How about A*!

        // create a predecessor map to store A* results in
        boost::vector_property_map<ob::PlannerData::Graph::Vertex> prev(data.numVertices());

        // Retieve a property map with the PlannerDataVertex object pointers for quick lookup
        boost::property_map<ob::PlannerData::Graph::Type, vertex_type_t>::type vertices = get(vertex_type_t(), graph);

        // Run A* search over our planner data
        ob::GoalState goal(si);
        goal.setState(data.getGoalVertex(0).getState());
        ob::PlannerData::Graph::Vertex start = boost::vertex(data.getStartIndex(0), graph);
        boost::astar_search(graph, start,
                            boost::bind(&distanceHeuristic, _1, &goal, &opt, vertices),
                            boost::predecessor_map(prev).
                            distance_compare(boost::bind(&ob::OptimizationObjective::
                                                         isCostBetterThan, &opt, _1, _2)).
                            distance_combine(boost::bind(&ob::OptimizationObjective::
                                                         combineCosts, &opt, _1, _2)).
                            distance_inf(opt.infiniteCost()).
                            distance_zero(opt.identityCost()));

        // Extracting the path
        og::PathGeometric path(si);
        for (ob::PlannerData::Graph::Vertex pos = boost::vertex(data.getGoalIndex(0), graph);
             prev[pos] != pos;
             pos = prev[pos])
        {
            path.append(vertices[pos]->getState());
        }
        path.append(vertices[start]->getState());
        path.reverse();

        // print the path to screen
        //path.print(std::cout);
        std::cout << "Found stored solution with " << path.getStateCount() << " states and length " << path.length() << std::endl;
    }
}

int main(int, char **)
{
    // Plan and save all of the planner data to disk
    planWithSimpleSetup();

    // Read in the saved planner data and extract the solution path
    readPlannerData();

    return 0;
}