This file is indexed.

/usr/share/ompl/demos/RandomWalkPlanner.py is in ompl-demos 1.0.0+ds2-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python

######################################################################
# Software License Agreement (BSD License)
#
#  Copyright (c) 2010, Rice University
#  All rights reserved.
#
#  Redistribution and use in source and binary forms, with or without
#  modification, are permitted provided that the following conditions
#  are met:
#
#   * Redistributions of source code must retain the above copyright
#     notice, this list of conditions and the following disclaimer.
#   * Redistributions in binary form must reproduce the above
#     copyright notice, this list of conditions and the following
#     disclaimer in the documentation and/or other materials provided
#     with the distribution.
#   * Neither the name of the Rice University nor the names of its
#     contributors may be used to endorse or promote products derived
#     from this software without specific prior written permission.
#
#  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
#  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
#  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
#  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
#  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
#  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
#  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
#  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
#  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
#  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
#  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
#  POSSIBILITY OF SUCH DAMAGE.
######################################################################

# Author: Mark Moll

try:
    from ompl import util as ou
    from ompl import base as ob
    from ompl import geometric as og
except:
    # if the ompl module is not in the PYTHONPATH assume it is installed in a
    # subdirectory of the parent directory called "py-bindings."
    from os.path import abspath, dirname, join
    import sys
    sys.path.insert(0, join(dirname(dirname(abspath(__file__))),'py-bindings'))
    from ompl import util as ou
    from ompl import base as ob
    from ompl import geometric as og
from random import choice

## @cond IGNORE

class RandomWalkPlanner(ob.Planner):
    def __init__(self, si):
        super(RandomWalkPlanner, self).__init__(si, "RandomWalkPlanner")
        self.states_ = []
        self.sampler_ = si.allocStateSampler()

    def solve(self, ptc):
        pdef = self.getProblemDefinition()
        goal = pdef.getGoal()
        si = self.getSpaceInformation()
        pi = self.getPlannerInputStates()
        st = pi.nextStart()
        while st:
            self.states_.append(st)
            st = pi.nextStart()
        solution = None
        approxsol = 0
        approxdif = 1e6
        while not ptc():
            rstate = si.allocState()
            # pick a random state in the state space
            self.sampler_.sampleUniform(rstate)
            # check motion
            if si.checkMotion(self.states_[-1], rstate):
                self.states_.append(rstate)
                sat = goal.isSatisfied(rstate)
                dist = goal.distanceGoal(rstate)
                if sat:
                    approxdif = dist
                    solution = len(self.states_)
                    break
                if dist < approxdif:
                    approxdif = dist
                    approxsol = len(self.states_)
        solved = False
        approximate = False
        if not solution:
            solution = approxsol
            approximate = True
        if solution:
            path = og.PathGeometric(si)
            for s in self.states_[:solution]:
                path.append(s)
            pdef.addSolutionPath(path)
            solved = True
        return ob.PlannerStatus(solved, approximate)

    def clear(self):
        super(RandomWalkPlanner, self).clear()
        self.states_ = []

## @endcond

def isStateValid(state):
    x = state[0]
    y = state[1]
    z = state[2]
    return x*x + y*y + z*z > .8

def plan():
    # create an R^3 state space
    space = ob.RealVectorStateSpace(3)
    # set lower and upper bounds
    bounds = ob.RealVectorBounds(3)
    bounds.setLow(-1)
    bounds.setHigh(1)
    space.setBounds(bounds)
    # create a simple setup object
    ss = og.SimpleSetup(space)
    ss.setStateValidityChecker(ob.StateValidityCheckerFn(isStateValid))
    start = ob.State(space)
    start()[0] = -1.
    start()[1] = -1.
    start()[2] = -1.
    goal = ob.State(space)
    goal()[0] = 1.
    goal()[1] = 1.
    goal()[2] = 1.
    ss.setStartAndGoalStates(start, goal, .05)
    # set the planner
    planner = RandomWalkPlanner(ss.getSpaceInformation())
    ss.setPlanner(planner)

    result = ss.solve(10.0)
    if result:
        if result.getStatus() == ob.PlannerStatus.APPROXIMATE_SOLUTION:
            print("Solution is approximate")
        # try to shorten the path
        ss.simplifySolution()
        # print the simplified path
        print(ss.getSolutionPath())


if __name__ == "__main__":
    plan()