/usr/share/ompl/demos/RigidBodyPlanningWithODESolverAndControls.cpp is in ompl-demos 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2012, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Ryan Luna */
#include <ompl/control/SpaceInformation.h>
#include <ompl/base/spaces/SE2StateSpace.h>
#include <ompl/control/ODESolver.h>
#include <ompl/control/spaces/RealVectorControlSpace.h>
#include <ompl/control/SimpleSetup.h>
#include <ompl/config.h>
#include <iostream>
#include <valarray>
#include <limits>
namespace ob = ompl::base;
namespace oc = ompl::control;
// Kinematic car model object definition. This class does NOT use ODESolver to propagate the system.
class KinematicCarModel : public oc::StatePropagator
{
public:
KinematicCarModel(const oc::SpaceInformationPtr &si) : oc::StatePropagator(si)
{
space_ = si->getStateSpace();
carLength_ = 0.2;
timeStep_ = 0.01;
}
virtual void propagate(const ob::State *state, const oc::Control* control, const double duration, ob::State *result) const
{
EulerIntegration(state, control, duration, result);
}
protected:
// Explicit Euler Method for numerical integration.
void EulerIntegration(const ob::State *start, const oc::Control *control, const double duration, ob::State *result) const
{
double t = timeStep_;
std::valarray<double> dstate;
space_->copyState(result, start);
while (t < duration + std::numeric_limits<double>::epsilon())
{
ode(result, control, dstate);
update(result, timeStep_ * dstate);
t += timeStep_;
}
if (t + std::numeric_limits<double>::epsilon() > duration)
{
ode(result, control, dstate);
update(result, (t - duration) * dstate);
}
}
/// implement the function describing the robot motion: qdot = f(q, u)
void ode(const ob::State *state, const oc::Control *control, std::valarray<double> &dstate) const
{
const double *u = control->as<oc::RealVectorControlSpace::ControlType>()->values;
const double theta = state->as<ob::SE2StateSpace::StateType>()->getYaw();
dstate.resize(3);
dstate[0] = u[0] * cos(theta);
dstate[1] = u[0] * sin(theta);
dstate[2] = u[0] * tan(u[1]) / carLength_;
}
/// implement y(n+1) = y(n) + d
void update(ob::State *state, const std::valarray<double> &dstate) const
{
ob::SE2StateSpace::StateType &s = *state->as<ob::SE2StateSpace::StateType>();
s.setX(s.getX() + dstate[0]);
s.setY(s.getY() + dstate[1]);
s.setYaw(s.getYaw() + dstate[2]);
space_->enforceBounds(state);
}
ob::StateSpacePtr space_;
double carLength_;
double timeStep_;
};
// Definition of the ODE for the kinematic car.
// This method is analogous to the above KinematicCarModel::ode function.
void KinematicCarODE (const oc::ODESolver::StateType& q, const oc::Control* control, oc::ODESolver::StateType& qdot)
{
const double *u = control->as<oc::RealVectorControlSpace::ControlType>()->values;
const double theta = q[2];
double carLength = 0.2;
// Zero out qdot
qdot.resize (q.size (), 0);
qdot[0] = u[0] * cos(theta);
qdot[1] = u[0] * sin(theta);
qdot[2] = u[0] * tan(u[1]) / carLength;
}
// This is a callback method invoked after numerical integration.
void KinematicCarPostIntegration (const ob::State* /*state*/, const oc::Control* /*control*/, const double /*duration*/, ob::State *result)
{
// Normalize orientation between 0 and 2*pi
ob::SO2StateSpace SO2;
SO2.enforceBounds (result->as<ob::SE2StateSpace::StateType>()->as<ob::SO2StateSpace::StateType>(1));
}
bool isStateValid(const oc::SpaceInformation *si, const ob::State *state)
{
// ob::ScopedState<ob::SE2StateSpace>
/// cast the abstract state type to the type we expect
const ob::SE2StateSpace::StateType *se2state = state->as<ob::SE2StateSpace::StateType>();
/// extract the first component of the state and cast it to what we expect
const ob::RealVectorStateSpace::StateType *pos = se2state->as<ob::RealVectorStateSpace::StateType>(0);
/// extract the second component of the state and cast it to what we expect
const ob::SO2StateSpace::StateType *rot = se2state->as<ob::SO2StateSpace::StateType>(1);
/// check validity of state defined by pos & rot
// return a value that is always true but uses the two variables we define, so we avoid compiler warnings
return si->satisfiesBounds(state) && (const void*)rot != (const void*)pos;
}
/// @cond IGNORE
class DemoControlSpace : public oc::RealVectorControlSpace
{
public:
DemoControlSpace(const ob::StateSpacePtr &stateSpace) : oc::RealVectorControlSpace(stateSpace, 2)
{
}
};
/// @endcond
void planWithSimpleSetup(void)
{
/// construct the state space we are planning in
ob::StateSpacePtr space(new ob::SE2StateSpace());
/// set the bounds for the R^2 part of SE(2)
ob::RealVectorBounds bounds(2);
bounds.setLow(-1);
bounds.setHigh(1);
space->as<ob::SE2StateSpace>()->setBounds(bounds);
// create a control space
oc::ControlSpacePtr cspace(new DemoControlSpace(space));
// set the bounds for the control space
ob::RealVectorBounds cbounds(2);
cbounds.setLow(-0.3);
cbounds.setHigh(0.3);
cspace->as<DemoControlSpace>()->setBounds(cbounds);
// define a simple setup class
oc::SimpleSetup ss(cspace);
// set state validity checking for this space
ss.setStateValidityChecker(boost::bind(&isStateValid, ss.getSpaceInformation().get(), _1));
// Setting the propagation routine for this space:
// KinematicCarModel does NOT use ODESolver
//ss.setStatePropagator(oc::StatePropagatorPtr(new KinematicCarModel(ss.getSpaceInformation())));
// Use the ODESolver to propagate the system. Call KinematicCarPostIntegration
// when integration has finished to normalize the orientation values.
oc::ODESolverPtr odeSolver(new oc::ODEBasicSolver<> (ss.getSpaceInformation(), &KinematicCarODE));
ss.setStatePropagator(oc::ODESolver::getStatePropagator(odeSolver, &KinematicCarPostIntegration));
/// create a start state
ob::ScopedState<ob::SE2StateSpace> start(space);
start->setX(-0.5);
start->setY(0.0);
start->setYaw(0.0);
/// create a goal state; use the hard way to set the elements
ob::ScopedState<ob::SE2StateSpace> goal(space);
goal->setX(0.0);
goal->setY(0.5);
goal->setYaw(0.0);
/// set the start and goal states
ss.setStartAndGoalStates(start, goal, 0.05);
/// we want to have a reasonable value for the propagation step size
ss.setup();
/// attempt to solve the problem within one second of planning time
ob::PlannerStatus solved = ss.solve(10.0);
if (solved)
{
std::cout << "Found solution:" << std::endl;
/// print the path to screen
ss.getSolutionPath().asGeometric().printAsMatrix(std::cout);
}
else
std::cout << "No solution found" << std::endl;
}
int main(int, char **)
{
std::cout << "OMPL version: " << OMPL_VERSION << std::endl;
planWithSimpleSetup();
return 0;
}
|